The multitude of in-plane shear tests existing in the literature seems to demonstrate the complexity of developing a test adapted to all experimental works. In a general framework of investigation of translaminar cracks in thin laminates, a test able to reproduce a pure in-plane shear loading was required. The laminate studied is notably employed as helicopter blade skin, and cyclic torsion induced by aerodynamic load involves cyclic in-plane shear. This particular application established some specifications for the test needed to carry out this study. To comply with them, an original technological solution has been developed from a three-rail shear test apparatus. This paper describes the resulting "reversible rail shear test" solution and its application to the study of in-plane shear behavior of a thin glass-epoxy laminate. The results concern plain and notched coupons under quasi-static loading, and crack growth tests under cyclic loading.
Infrared thermography was used to study damage developing in woven fabrics. Two different experiments were performed, a ±45°tensile test and a rail shear test. These two different types of tests show different damage scenarios, even if the shear stress/strain curves are similar. The ±45°tension test shows matrix hardening and matrix cracking whereas the rail shear test shows only matrix hardening. The infrared thermography was used to perform an energy balance, which enabled the visualization of the portion of dissipated energy caused by matrix cracking. The results showed that when the resin is subjected to pure shear, a larger amount of energy is stored by the material, whereas when the resin is subjected to hydrostatic pressure, the main part of mechanical energy is dissipated as heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.