The balance between regulatory and effector functions is important for maintaining efficient immune responses, while avoiding autoimmunity. The inflammatory skin disease psoriasis is sustained by the ongoing activation of pathogenic effector T cells. We found that a CD4+ T lymphocyte subpopulation in peripheral blood, phenotypically CD25high, CTLA-4+, Foxp3high (regulatory T (Treg) cells), is deficient in its suppressor activity in psoriasis. This was associated with accelerated proliferation of CD4+ responder T cells in psoriasis, the majority of which expressed CXCR3. Nevertheless, criss-cross experiments isolated the defect to psoriatic Treg cells. To examine Treg cells in a nonlymphoid tissue of a human T cell-mediated disease, Treg cells were also analyzed and isolated from the site of inflammation, psoriatic lesional skin. At the regulatory vs effector T cells ratios calculated to be present in skin, however, the psoriatic Treg cell population demonstrated decreased suppression of effector T cells. Thus, dysfunctional blood and target tissue CD4+CD25high Treg cell activity may lead to reduced restraint and consequent hyperproliferation of psoriatic pathogenic T cells in vivo. These findings represent a critical component of human organ-specific autoimmune disease and may have important implications with regard to the possible therapeutic manipulation of Treg cells in vivo.
Psoriasis is characterized by activation of T cells with a type 1 cytokine profile. IL-12 and IL-23 produced by APCs are essential for inducing Th1 effector cells. Promising clinical results of administration of an Ab specific for the p40 subunit of IL-12 and IL-23 (anti-IL-12p40) have been reported recently. This study evaluated histological changes and mRNA expression of relevant cytokines and chemokines in psoriatic skin lesions following a single administration of anti-IL-12p40, using immunohistochemistry and real-time RT-PCR. Expression levels of type 1 cytokine (IFN-γ) and chemokines (IL-8, IFN-γ-inducible protein-10, and MCP-1) were significantly reduced at 2 wk posttreatment. The rapid decrease of these expression levels preceded clinical response and histologic changes. Interestingly, the level of an anti-inflammatory cytokine, IL-10, was also significantly reduced. Significant reductions in TNF-α levels and infiltrating T cells were observed in high responders (improvement in clinical score, ≥75% at 16 wk), but not in low responders. Of importance, the levels of APC cytokines, IL-12p40 and IL-23p19, were significantly decreased in both responder populations, with larger decreases in high responders. In addition, baseline levels of TNF-α significantly correlated with the clinical improvement at 16 wk, suggesting that these levels may predict therapeutic responsiveness to anti-IL-12p40. Thus, in a human Th1-mediated disease, blockade of APC cytokines by anti-IL-12p40 down-regulates expression of type 1 cytokines and chemokines that are downstream of IL-12/IL-23, and also IL-12/IL-23 themselves, with a pattern indicative of coordinated deactivation of APCs and Th1 cells.
Human beta-defensins (hBDs, −1, 2, 3) are a family of epithelial cell derived antimicrobial peptides (AMPs) that protect mucosal membranes from microbial challenges. In addition to their antimicrobial activities, they possess other functions; e.g., cell activation, proliferation, regulation of cytokine/chemokine production, migration, differentiation, angiogenesis, and wound healing processes. It has also become apparent that defensin levels change with the development of neoplasia. However, inconsistent observations published by various laboratories make it difficult to reach a consensus as to the direction of the dysregulation and role the hBDs may play in various cancers. This is particularly evident in studies focusing on oral squamous cell carcinoma (OSCC). By segregating each hBD by cancer type, interrogating methodologies, and scrutinizing the subject cohorts used in the studies, we have endeavored to identify the “take home message” for each one of the three hBDs. We discovered that (1) consensus-driven findings indicate that hBD-1 and−2 are down- while hBD-3 is up-regulated in OSCC; (2) hBD dysregulation is cancer-type specific; (3) the inhibition/activation effect an hBD has on cancer cell lines is related to the direction of the hBD dysregulation (up or down) in the cancer from which the cell lines derive. Therefore, studies addressing hBD dysregulation in various cancers are not generalizable and comparisons should be avoided. Systematic delineation of the fate and role of the hBDs in a specific cancer type may lead to innovative ways to use defensins as prospective biomarkers for diagnostic/prognostic purposes and/or in novel therapeutic modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.