Background The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise <1% to 70% (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings The investigated population (F10 lineage) contributed on average 11% to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigated pond, which was undergoing complete mixis and pronounced stratification in diurnal cycles. Obviously, metabolic and ecological versatility is not a prerequisite for long-lasting establishment of abundant bacterial populations under highly dynamic environmental conditions. Caution should be exercised when generalizing the obtained insights into the ecology and adaptation of the investigated lineage to other Polynucleobacter lineages.
Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning.
A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that 'cages' individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in lowdiversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions.
Predator-prey relationships belong to the most important and well-studied ecological interactions in nature. Understanding the underlying mechanisms is important to predict community dynamics and to estimate coexistence probability. Historically, evolution has been considered to be too slow to affect such ecological interactions. However, evolution can occur within ecological time scales, potentially affecting predator-prey communities. In an antagonistic pair-wise relationship the prey might evolve to minimize the effect caused by the predator (e.g. mortality), while the predator might evolve to maximize the effect (e.g. food intake). Evolution of one of the species or even co-evolution of both species in predator-prey relationships is often difficult to estimate from population dynamics without measuring of trait changes in predator and/or prey population. Particularly in microbial systems, where microorganisms evolve quickly, determining whether co-evolution occurs in predator-prey systems is challenging. We simulate observational data using quantitative trait evolution models and show that the interaction between bacteria and ciliates can be best explained as a co-evolutionary process, where both the prey and predator evolve. Evolution by prey alone explains the data less well, whereas the models with predator evolution alone or no evolution are both failing. We conclude that that ecology and evolution both interact in shaping community dynamics in microcosms. Ignoring the contribution of evolution might lead to incorrect conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.