Minoxidil, a potent vasodilator, stimulates the growth of terminal hair from vellus or miniaturized follicles in balding scalp. To study minoxidil's action on isolated follicles we developed and validated an organ culture system using mouse whisker follicles. Control follicles cultured without minoxidil showed macroscopic changes including kinking of the hair shafts and bending of the follicles. Necrosis was evident in the differentiating epithelial elements forming the cuticle, cortex, and inner root sheath. These abnormalities were eliminated or greatly reduced in minoxidil-treated follicles. The morphology of these follicles was consistent with the production of new hair during culture. Direct measurement demonstrated that minoxidil-treated follicles grew significantly longer than control follicles during the 3-d culture. Minoxidil increased the incorporation of radiolabeled cysteine and glycine in follicles compared with control treatment. Doses of minoxidil up to 1 mM caused increased cysteine incorporation, while higher doses were inhibitory. Experiments with labeled thymidine indicated that minoxidil induced proliferation of hair epithelial cells near the base of the follicle. Autoradiography also showed that cysteine accumulated in the keratogenous zone above the dermal papilla. These studies demonstrate that organ cultured follicles are suitable for determining minoxidil's mechanism of action and may be useful for studying other aspects of hair biology. The results also show that minoxidil's effect on hair follicles is direct. This suggests that minoxidil's action in vivo includes more than just increasing blood flow to hair follicles.
Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti-glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases.
NMDA receptor (NMDAR) antagonists, such as phencyclidine, ketamine, or dizocilpine (MK-801) are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP), multi- (MUA) and single-unit activity, and evoked potential, including paired-pulse facilitation (PPF) in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC) in urethane anesthetized rats. Systemic administration of MK-801 (0.05 mg/kg, i.v.) decreased overall MUA, with a diverse effect on single-unit activity, including increased, decreased, or unchanged firing, and in line with our previous findings shifted delta-frequency power of the LFP and disrupted PPF (Kiss et al., 2011). In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD). Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDAR antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDAR blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.