The present study reaffirms emerging data in humans demonstrating no evidence of white adipose tissue beiging in response to exercise training, and supports a growing body of work demonstrating divergence of brown/beige adipose location, molecular characterization and physiological function between rodents and humans.
Adipocytes are major regulators of metabolism, and endurance exercise training improves adipocyte function; however, the molecular mechanisms that regulate chronic adaptive responses remain unresolved. microRNAs (miRNAs) influence adipocyte differentiation and metabolism. Accordingly, we aimed to determine whether adipocyte miRNA expression is responsive to exercise training and to identify exercise-responsive miRNAs that influence adipocyte metabolism. Next-generation sequencing was used to profile miRNA expression of adipocytes that were isolated from abdominal subcutaneous (ABD) and gluteofemoral (GF) adipose tissue of overweight men before and after 6 wk of endurance exercise training. Differentially expressed miRNAs were overexpressed or silenced in 3T3-L1 adipocytes, and lipid metabolism was examined. Next-generation sequencing identified 526 miRNAs in adipocytes, and there were no statistical differences in miRNA expression when comparing pre- and post-training samples for ABD and GF adipocytes. miR-10b expression was increased in ABD compared with GF adipocytes, whereas miR-204, miR-3613, and miR-4532 were more highly expressed in GF compared with ABD adipocytes. Blocking miR-10b in adipocytes suppressed β-adrenergic lipolysis but generally had a minor effect on lipid metabolism. Thus, unlike their critical role in adipogenesis, stable changes in miRNA expression do not play a prominent role in the regulation of adipocyte function in response to endurance exercise training.-Tsiloulis, T., Pike, J., Powell, D., Rossello, F. J., Canny, B. J., Meex, R. C. R., Watt, M. J. Impact of endurance exercise training on adipocyte microRNA expression in overweight men.
The production of new adipocytes is required to maintain adipose tissue mass and involves the proliferation and differentiation of adipocyte precursor cells (APCs). In this review, we outline new developments in understanding the phenotype of APCs and provide evidence suggesting that APCs differ between distinct adipose tissue depots and are affected by obesity. Post-mitotic mature adipocytes regulate systemic lipid homeostasis by storing and releasing free fatty acids, and also modulate energy balance via the secretion of adipokines. The review highlights recent advances in understanding the cellular and molecular mechanisms regulating adipocyte metabolism, with a particular focus on lipolysis regulation and the involvement of microribonucleic acids (miRNAs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.