Using continuous wave, 94-GHz millimeter-wave interferometry, a signal representing chest wall motion can be obtained that contains both the heart rate and respiration patterns of a human subject. These components have to be separated from each other in the received signal. Our method was to use the quadrature and in-phase components of the signal, after removing the mean of each, to find the phase, unwrap it, and convert it to a displacement measurement. Using this, the power spectrum was examined for peaks, which corresponded to the heart rate and respiration rate. The displacement waveform of the chest was also analyzed for discrete heartbeats using a novel wavelet decomposition technique.
Thermal tomography is a computational method for heat diffusion-based imaging of solids, which provides 3D visualization of data from flash thermography measurements. We investigate thermal tomography imaging and nondestructive evaluation of stainless steel and nickel super alloy metallic structures produced with the laser powder bed fusion (LPBF) additive manufacturing (AM) process. Metallic structures produced with LPBF contain defects, and there are limited capabilities to evaluate these structures non-destructively. Thermal tomography reconstruction of 3D apparent spatial effusivity provides information about AM structure geometry and internal material flaws. We study performance of thermal tomography in imaging of metallic structures through COMSOL computer simulations of transient heat transfer and through reconstruction of data obtained from experimental measurements. Thermal tomography reconstructions of structure shape and dimensions are shown for the Inconel 718 AM structure which has variations in the horizontal plane but is uniform along the depth dimension. Reconstruction of internal defects is investigated using a stainless steel 316L specimen with flat bottom hole (FBH) indentations, and the Inconel 718 plate is produced with the LPBF method, which contains imprinted hemispherical shape low density regions containing non-sintered metallic powder. The FBHs have the same sizes as the imprinted defects in the LPBF specimens but offer better imaging contrast. Thermal tomography reconstructions provide visualizations of internal defects and allow for estimation of their sizes and locations. Results of this study demonstrate that thermal tomography can be used for visualization and quality control in AM.
This paper analyzes heart rate (HR) information from physiological tracings collected with a remote millimeter wave (mmW) I-Q sensor for biometric monitoring applications. A parameter optimization method based on the nonlinear Levenberg-Marquardt algorithm is used. The mmW sensor works at 94 GHz and can detect the vital signs of a human subject from a few to tens of meters away. The reflected mmW signal is typically affected by respiration, body movement, background noise, and electronic system noise. Processing of the mmW radar signal is, thus, necessary to obtain the true HR. The down-converted received signal in this case consists of both the real part (I-branch) and the imaginary part (Q-branch), which can be considered as the cosine and sine of the received phase of the HR signal. Instead of fitting the converted phase angle signal, the method directly fits the real and imaginary parts of the HR signal, which circumvents the need for phase unwrapping. This is particularly useful when the SNR is low. Also, the method identifies both beat-to-beat HR and individual heartbeat magnitude, which is valuable for some medical diagnosis applications. The mean HR here is compared to that obtained using the discrete Fourier transform.
This paper presents a solution to an aiming problem in the remote sensing of vital signs using an integration of two systems. The problem is that to collect meaningful data with a millimeter-wave sensor, the antenna must be pointed very precisely at the subject's chest. Even small movements could make the data unreliable. To solve this problem, we attached a camera to the millimeter-wave antenna, and mounted this combined system on a pan/tilt base. Our algorithm initially finds a subject's face and then tracks him/her through subsequent frames, while calculating the position of the subject's chest. For each frame, the camera sends the location of the chest to the pan/tilt base, which rotates accordingly to make the antenna point at the subject's chest. This paper presents a system for concurrent tracking and data acquisition with results from some sample scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.