We developed aluminium phosphate-coated alumina fibres with significantly improved pull-out properties, which may be suitable for reinforcing advanced inorganic composites qualified for operating temperatures up to 1200°C. Aluminium phosphate layers are generated on the surface of alumina fibres using a continuous chemical vapour deposition (CVD) process: At furnace temperatures between 850°C and 1050°C, within a tube reactor heated by an electrical furnace, the alumina fibres are exposed to gas mixtures of phosphoryl trichloride and oxygen, inducing dense aluminium phosphate layers on the fibre surface. Mini-composites were prepared by embedding the coated fibres into an alumina matrix.
Oxide ceramic matrix composites (O-CMCs) have a high potential for usage in thermal protection systems or combustion chambers because of their low weight, temperature-and corrosion stability as well as non-brittle failure behavior. Mechanical property changes over their lifetime due to operational loads are not well understood. Moreover, mechanical properties from planar samples under laboratory conditions often differ substantially from upscaled components with complex geometries. In this work, the influences of curvature and preloading conditions were investigated experimentally using modeling to determine boundary conditions. Effects of curvature and trends among preload conditions were determined, with high-cycle-fatigue-preload (HCF) reducing strength and Young's Modulus by 15% compared to their original values where low-cycle-fatigue-preload (LCF) had smaller effect. The low impacts of high temperatures and small-to-medium loads on the properties of O-CMCs makes them an interesting choice for high-temperature combustive environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.