Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
The control of viral infections in insects is a current issue of major concern and RNA interference (RNAi) is considered the main antiviral immune response in this group of animals. Here we demonstrate that overexpression of key RNAi factors can help to protect insect cells against viral infections. In particular, we show that overexpression of Dicer2 and Argonaute2 in lepidopteran cells leads to improved defense against the acute infection of the Cricket Paralysis Virus (CrPV). We also demonstrate an important role of RNAi in the control of persistent viral infections, as the one caused by the Macula-like Latent Virus (MLV). Specifically, a direct interaction between Argonaute2 and virus-specific small RNAs is shown. Yet, while knocking down Dicer2 and Argonaute2 resulted in higher transcript levels of the persistently infecting MLV in the lepidopteran cells under investigation, overexpression of these proteins could not further reduce these levels. Taken together, our data provide deep insight into the RNAi-based interactions between insects and their viruses. In addition, our results suggest the potential use of an RNAi gain-of-function approach as an alternative strategy to obtain reduced viral-induced mortality in Lepidoptera, an insect order that encompasses multiple species of relevant economic value.
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
High throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5′end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq. We provided a proof-of-concept of SL-seq in Leishmania donovani, the main causative agent of visceral leishmaniasis in humans, and successfully applied the method to sequence Leishmania mRNA directly from infected macrophages and from highly diluted mixes with human RNA. mRNA profiles obtained with SL-seq corresponded largely to those obtained from conventional poly-A tail purification methods, indicating both enumerate the same mRNA pool. However, SL-seq offers additional advantages, including lower sequencing depth requirements, fast and simple library prep and high resolution splice site detection. SL-seq is therefore ideal for fast and massive parallel sequencing of parasite transcriptomes directly from host tissues. Since SLs are also present in Nematodes, Cnidaria and primitive chordates, this method could also have high potential for transcriptomics studies in other organisms.
RNA interference (RNAi) is a highly conserved pathway for the post-transcriptional regulation of gene expression. It has become a crucial tool in life science research, with promising potential for pest-management applications. To induce an RNAi response, long double-stranded RNA (dsRNA) sequences specific to the target gene must be delivered to the cells. This dsRNA substrate is then processed to small RNA (sRNA) fragments that direct the silencing response. A major obstacle to applying this technique is the need to produce sufficiently large amounts of dsRNA in a very cost-effective manner. To overcome this issue, much attention has been given to the development and optimization of biological production systems. One such system is the E. coli HT115 strain transformed with the L4440 vector. While its effectiveness at inducing knockdowns in animals through feeding of the bacteria has been demonstrated, there is only limited knowledge on the applicability of bacteria-derived dsRNA for in vitro experiments. In this paper, we describe and compare methods for the economical (43.2 €/mg) and large-scale (mg range) production of high-quality dsRNA from the HT115 bacterial system. We transformed the bacteria with constructs targeting the Helicoverpa-specific gene Dicer2 and, as a non-endogenous control, the Green Fluorescent Protein gene (GFP). First, we compared the total RNA extraction yields of four cell-lysis treatments: heating, lysozyme digestion, sonication, and a control protocol. Second, we assessed the quality and purity of these extracted dsRNAs. Third, we compared methods for the further purification of dsRNAs from crude RNA extracts. Finally, we demonstrated the efficiency of the produced dsRNAs at inducing knockdowns in a lepidopteran cell line. The insights and results from this paper will empower researchers to conduct otherwise prohibitively expensive knockdown studies, and greatly reduce the production times of routinely or large-scale utilized dsRNA substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.