On 31 August a new eruption began from the same fissure and is still ongoing at the time of writing. After 4 September the movement associated with the dyke was minor, suggesting an approximate equilibrium between inflow of magma into the dyke and magma flowing out of it feeding the eruption. Minor eruptions may have occurred under Vatnajškull; shallow ice depressions marked by circular crevasses (ice cauldrons) were discovered in the period 27/08-07/09, indicating leakage of magma or magmatic heat to the glacier causing basal melting ( Fig. 1 and 2b). On 5 September, aircraft radar profiling showed that the ice surface in the centre of the B ‡r!arbunga caldera had subsided 16 m relative to the surroundings, resulting in a 0.32±0.08 km 3 subsidence bowl ( can be compared to a 1 day interferogram over the ice surface spanning 27 -28 August (Fig. 1), that has maximum line-of-sight (LOS) increase of 57 cm, indicating 55-70 cm of subsidence, during 24 hours. From 24 August to 6 September 16 M≥5 earthquakes occurred on the caldera boundary.Over 22000 earthquakes were automatically detected 16/08-06/09 2014, 5000 of which have been manually checked. Four thousand of these have been relatively relocated, defining the dyke segments. Ground deformation in areas outside the Vatnajškull ice cap, and on nunataks within the ice cap, is well mapped by a combination of InSAR, continuously recording GPS sites, and campaign GPS measurements. The GPS observations and analysis give the temporal evolution of the three-dimensional displacements used in the modelling (Fig. 1). Interferometric analysis of synthetic aperture radar images from the COSMO-SkyMed, RADARSAT-2 and TerraSAR-X satellites was used to form 11 interferograms showing LOS change spanning different time intervals (Supplementary Fig. 2). The analysis of seismic and geodetic data is described in Methods.Initial modelling of the dyke, with no a priori constraints on position, strike or dip, show the deformation data require the dyke to be approximately vertical and line up with the seismicity (Extended Data item 4). We therefore fixed the dip to be vertical and the lateral position of the dyke to coincide with the earthquake locations.We modelled the dyke as a series of rectangular patches and estimated the opening and slip on each patch ( Fig. 3a; see Supplementary Figures 3-4 for slip and standard deviations of opening). We used a Markov-chain Monte Carlo approach to estimate 7 the multivariate probability distribution for all model parameters (Methods) on each day 16/08-06/09 2014 (Fig. 2d). The results suggest that most of the magma injected into the dyke is shallower than the seismicity, which mostly spans the depth range from 5 to 8 km below sea level (see Fig. 2c and Methods). While magma may extend to depths greater than 9 km near the centre of the ice cap, towards the edge of the ice cap where constraints from InSAR and GPS are much better, significant opening is all shallower than 5 km (Fig. 3a). The total volume intruded into the dyke by 28 August was 0.48-0...
40Large volcanic eruptions on Earth commonly occur with collapse of the roof of a crustal magma 41 reservoir, forming a caldera. Only a few such collapses occur per century and lack of detailed 42 observations has obscured insight on mechanical interplay between collapse and eruption. We use Calderas are 1 -100 km diameter depressions found in volcanic regions of Earth and other planets. basaltic andesite) intrusive activity and eruptions (2,(9)(10)(11)(12). 59The consensus from field and modelling studies is that caldera collapse progresses from initial 60 surface downsag to fault-controlled subsidence (1, 8, 13, 14). The pre-collapse topography is obtained by subtracting the subsidence observed at the surface. As we recorded the caldera subsidence mainly on the ice (Fig. 1, Fig. S1), we made corrections and (Fig. 3A). We therefore conclude that suggestions of a large increase in ice flow out of the caldera 147 during these events (25) cannot be fitted with our data. 148Bedrock subsidence exceeding 1 m occurred within an area of 110 km 2 that extended beyond the 149 pre-existing caldera (Fig. 1, Fig. S1). After termination of collapse the total subsidence at the pre-150 existing caldera rims amounted to 3 to 11 meters ( Fig. 1D and 1E). Using subglacial radio-echo GPS station in the center of the caldera (Fig. 1A), including the rate of vertical rate of ice surface Cumulative number of M>4 caldera earthquakes, with magnitude evolution colored in red, blue and 176 grey representing clusters on the southern rim, the northern rim and smaller clusters, respectively 177 (see Fig. S5). E) Cumulative seismic moment for M>4 caldera earthquakes. from analysis of subaerial gas measurements (Fig. 4). This depth concurs with our regional on FTIR and Multi-GAS measurements (24). 194Seismicity and subsurface structure 195 We used seismic data and Distinct Element Method (DEM) numerical modelling (24), to 196 characterize the deeper collapse structure as the reactivation of a steeply-inclined ring fault (Fig. 5). 197We mostly observed seismicity at depths of 0-9 km beneath the northern and southern caldera rims 198( Fig. 5B), with earthquakes being more numerous on the northern rim. This spatial pattern of 199 seismicity is consistent with fracturing above a deflating magma reservoir that was elliptical in (Fig. 5C, D). Our best fitting models had preexisting faults dipping out at 80-85¡ from the caldera 207 center on the north side and at 85-90¡ toward the caldera center on the south side. The modeled pre- 208existing faults lay at 1-2 km below the surface on the north side and 3-4 km on the south side. 209Modeling of a more complex fault geometry or the inclusion of greater material heterogeneity may 210 further improve the data fit, but presently lacks robust geophysical constraints. components of the observed earthquakes at B ‡rdarbunga. We, however, narrowed down on 222 plausible solutions by using the micro-earthquakes (Fig. 5A). The moment tensor solutions are well 223 constrained, but the inferred d...
The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe.
The effusive six months long 2014-2015 Bárðarbunga eruption (31 August-27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km 3 of lava. The total SO 2 emission was 11 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO 2 exceeded the 350 µg m −3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO 2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H 2 SO 4 , HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.
The 13-day-long Gjµlp eruption within the Vatnajökull ice cap in October 1996 provided important data on ice-volcano interaction in a thick temperate glacier. The eruption produced 0.8 km 3 of mainly volcanic glass with a basaltic icelandite composition (equivalent to 0.45 km 3 of magma). Ice thickness above the 6-km-long volcanic fissure was initially 550-750 m. The eruption was mainly subglacial forming a 150-500 m high ridge; only 2-4% of the volcanic material was erupted subaerially. Monitoring of the formation of ice cauldrons above the vents provided data on ice melting, heat flux and indirectly on eruption rate. The heat flux was 5-610 5 W m -2 in the first 4 days. This high heat flux can only be explained by fragmentation of magma into volcanic glass. The pattern of ice melting during and after the eruption indicates that the efficiency of instantaneous heat exchange between magma and ice at the eruption site was 50-60%. If this is characteristic for magma fragmentation in subglacial eruptions, volcanic material and meltwater will in most cases take up more space than the ice melted in the eruption. Water accumulation would therefore cause buildup of basal water pressure and lead to rapid release of the meltwater. Continuous drainage of meltwater is therefore the most likely scenario in subglacial eruptions under temperate glaciers. Deformation and fracturing of ice played a significant role in the eruption and modified the subglacial water pressure. It is found that water pressure at a vent under a subsiding cauldron is substantially less than it would be during static loading by the overlying ice, since the load is partly compensated for by shear forces in the rapidly deforming ice. In addition to intensive crevassing due to subsidence at Gjµlp, a long and straight crevasse formed over the southernmost part of the volcanic fissure on the first day of the eruption. It is suggested that the feeder dyke may have overshot the bedrock-ice interface, caused high deformation rates and fractured the ice up to the surface. The crevasse later modified the flow of meltwater, explaining surface flow of water past the highest part of the edifice. The dominance of magma fragmentation in the Gjµlp eruption suggests that initial ice thickness greater than 600-700 m is required if effusive eruption of pillow lava is to be the main style of activity, at least in similar eruptions of high initial magma discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.