The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe.
[1] The April-May 2010 eruption of the Eyjafjallajökull volcano (Iceland) was characterized by a nearly continuous injection of tephra into the atmosphere that affected various economic sectors in Iceland and caused a global interruption of air traffic. Eruptive activity during 4-8 May 2010 was characterized based on short-duration physical parameters in order to capture transient eruptive behavior of a long-lasting eruption (i.e., total grain-size distribution, erupted mass, and mass eruption rate averaged over 30 min activity). The resulting 30 min total grain-size distribution based on both ground and Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) satellite measurements is characterized by Mdphi of about 2 and a fine-ash content of about 30 wt %. The accumulation rate varied by 2 orders of magnitude with an exponential decay away from the vent, whereas Mdphi shows a linear increase until about 18 km from the vent, reaching a plateau of about 4.5 between 20 and 56 km. The associated mass eruption rate is between 0.6 and 1.2 × 10 5 kg s −1 . In situ sampling showed how fine ash mainly fell as aggregates of various typologies. About 5 to 9 wt % of the erupted mass remained in the cloud up to 1000 km from the vent, suggesting that nearly half of the ash >7 settled as aggregates within the first 60 km. Particle sphericity and shape factor varied between 0.4 and 1 with no clear correlation to the size and distance from vent. Our experiments also demonstrate how satellite retrievals and Doppler radar grain-size detection can provide a real-time description of the source term but for a limited particle-size range.Citation: Bonadonna, C., R. Genco, M. Gouhier, M. Pistolesi, R. Cioni, F. Alfano, A. Hoskuldsson, and M. Ripepe (2011), Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations,
The 6-month long eruption at Holuhraun (August 2014-February 2015) in the Bárðarbunga-Veiðivötn volcanic system was the largest effusive eruption in Iceland since the 1783-1784 CE Laki eruption. The lava flow field covered~84 km 2 and has an estimated bulk (i.e., including vesicles) volume of~1.44 km 3. The eruption had an average discharge rate of~90 m 3 /s making it the longest effusive eruption in modern times to sustain such high average flux. The first phase of the eruption (August 31, 2014 to mid-October 2014) had a discharge rate of~350 to 100 m 3 /s and was typified by lava transport via open channels and the formation of four lava flows, no. 1-4, which were emplaced side by side. The eruption began on a 1.8 km long fissure, feeding partly incandescent sheets of slabby pāhoehoe up to 500 m wide. By the following day the lava transport got confined to open channels and the dominant lava morphology changed to rubbly pāhoehoe and 'a'ā. The latter became the dominating morphology of lava flows no. 1-8. The second phase of the eruption (Mid-October to end November) had a discharge of~100-50 m 3 /s. During this time the lava transport system changed, via the formation of a b 1 km 2 lava pond~1 km east of the vent. The pond most likely formed in a topographical low created by a the pre-existing Holuhraun and the new Holuhraun lava flow fields. This pond became the main point of lava distribution, controlling the emplacement of subsequent flows (i.e. no. 5-8). Towards the end of this phase inflation plateaus developed in lava flow no. 1. These inflation plateaus were the surface manifestation of a growing lava tube system, which formed as lava ponded in the open lava channels creating sufficient lavastatic pressure in the fluid lava to lift the roof of the lava channels. This allowed new lava into the previously active lava channel lifting the channel roof via inflation. The final (third) phase, lasting from December to end-February 2015 had a mean discharge rate of~50 m 3 /s. In this phase the lava transport was mainly confined to lava tubes within lava flows no. 1-2, which fed breakouts that resurfaced N 19 km 2 of the flow field. The primary lava morphology from this phase was spiny pāhoehoe, which superimposed on the 'a'ā lava flows no. 1-3 and extended the entire length of the flow field (i.e. 17 km). This made the 2014-2015 Holuhraun a paired flow field, where both lava morphologies had similar length. We suggest that the similar length is a consequence of the pāhoehoe is fed from the tube system utilizing the existing 'a'ā lava channels, and thereby are controlled by the initial length of the 'a'ā flows.
The effusive six months long 2014-2015 Bárðarbunga eruption (31 August-27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km 3 of lava. The total SO 2 emission was 11 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO 2 exceeded the 350 µg m −3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO 2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H 2 SO 4 , HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.
The 2014-2015 Bárðarbunga-Veiðivötn fissure eruption at Holuhraun produced about 1.5 km 3 of lava, making it the largest eruption in Iceland in more than 200 years. Over the course of the eruption, daily volcanic sulfur dioxide (SO 2 ) emissions exceeded daily SO 2 emissions from all anthropogenic sources in Europe in 2010 by at least a factor of 3. We present surface air quality observations from across Northern Europe together with satellite remote sensing data and model simulations of volcanic SO 2 for September 2014. We show that volcanic SO 2 was transported in the lowermost troposphere over long distances and detected by air quality monitoring stations up to 2750 km away from the source. Using retrievals from the Ozone Monitoring Instrument (OMI) and the Infrared Atmospheric Sounding Interferometer (IASI), we calculate an average daily SO 2 mass burden of 99 ± 49 kilotons (kt) of SO 2 from OMI and 61 ± 18 kt of SO 2 from IASI for September 2014. This volcanic burden is at least a factor of 2 greater than the average SO 2 mass burden between 2007 and 2009 due to anthropogenic emissions from the whole of Europe. Combining the observational data with model simulations using the United Kingdom Met Office's Numerical Atmospheric-dispersion Modelling Environment model, we are able to constrain SO 2 emission rates to up to 120 kilotons per day (kt/d) during early September 2014, followed by a decrease to 20-60 kt/d between 6 and 22 September 2014, followed by a renewed increase to 60-120 kt/d until the end of September 2014. Based on these fluxes, we estimate that the eruption emitted a total of 2.0 ± 0.6 Tg of SO 2 during September 2014, in good agreement with ground-based remote sensing and petrological estimates. Although satellite-derived and model-simulated vertical column densities of SO 2 agree well, the model simulations are biased low by up to a factor of 8 when compared to surface observations of volcanic SO 2 on 6-7 September 2014 in Ireland. These biases are mainly due to relatively small horizontal and vertical positional errors in the simulations of the volcanic plume occurring over transport distances of thousands of kilometers. Although the volcanic air pollution episodes were transient and lava-dominated volcanic eruptions are sporadic events, the observations suggest that (i) during an eruption, volcanic SO 2 measurements should be assimilated for near real-time air quality forecasting and (ii) existing air quality monitoring networks should be retained or extended to monitor SO 2 and other volcanic pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.