The use of bacteriorhodopsin (BR) as an active layer in write-once-read-many optical storage is presented. This novel feature of BR materials may be used on a wide variety of substrates, among them transparent substrates but also paper and plastics. The physical basis of the recording process is polarization-sensitive two-photon absorption. As an example for this new BR application, an identification card equipped with an optical recording strip is presented, which has a capacity of about 1 MB of data. The recording density currently used is 125 kB/cm2, which is far from the optical limits but allows operation with cheap terminals using plastic optics. In the examples given, data are stored in blocks of 10 kB each. A special optical encryption procedure allows the stored data to be protected from unauthorized reading. The molecular basis of this property is again the polarization-sensitive recording mechanism. The unique combination of optical storage, photochromism, and traceability of the BR material is combined on the single-molecule level. BR introduces a new quality of storage capability for applications with increased security and anticounterfeiting requirements.
Recent trends in optical metrology suggest that, in order for holographic measurement to become a widespread tool, it must be based on methods that do not require physical development of the hologram. While digital holography has been successfully demonstrated in recent years, unfortunately the limited information capacity of present electronic sensors, such as CCD arrays, is still many orders of magnitude away from directly competing with the high-resolution silver halide plates used in traditional holography. As a result, present digital holographic methods with current electronic sensors cannot record object sizes larger than several hundred microns at high resolution. In this paper, the authors report on the use of bacteriorhodopsin (BR) for digital holography to overcome these limitations. In particular, BR is a real-time recording medium with an information capacity (5000 line-pairs/mm) that even exceeds high resolution photographic film. As such, a centimetre-square area of BR film has the same information capacity of several hundred state-of-the-art CCD cameras. For digital holography, BR temporarily holds the hologram record so that its information content can be digitized for numeric reconstruction. In addition, this paper examines the use of BR for optical reconstruction without chemical development. When correctly managed, it is found that BR is highly effective, in terms of both quality and process time, for three-dimensional holographic measurements. Consequently, several key holographic applications, based on BR, are proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.