The Sonogashira coupling reaction is not catalyzed by AuI/dppe in the absence of Pd complexes. However, addition of 0.1 mol % of Pd(0) led to efficient cross-coupling reactions. The most plausible catalytic cycles for the Au-catalyzed cross-coupling reactions have been examined and are unlikely in the absence of Pd contamination.
The cyclizations of enynes substituted at the alkyne gives products of formal [4+2] cyclization with Au(I) catalysts. 1,8-Dien-3-ynes cyclize by a 5-exo-dig pathway to form hydrindanes. 1,6-Enynes with an aryl ring at the alkyne give 2,3,9,9a-tetrahydro-1H-cyclopenta[b]naphthalenes by a 5-exo-dig cyclization followed by a Friedel-Crafts-type ring expansion. A 6-endo-dig cyclization is also observed in some cases as a minor process, although in a few cases, this is the major cyclization pathway. In addition to cationic gold complexes bearing bulky biphenyl phosphines, a gold complex with tris(2,6-di-tert-butylphenyl)phosphite is exceptionally reactive as a catalyst for this reaction. This cyclization can also be carried out very efficiently with heating under microwave irradiation. DFT calculations support a stepwise mechanism for the cycloaddition by the initial formation of an anti-cyclopropyl gold(I)-carbene, followed by its opening to form a carbocation stabilized by a pi interaction with the aryl ring, which undergoes a Friedel-Crafts-type reaction.
Over the last few decades the use of radicals in synthesis has witnessed an explosive growth through introduction of efficient chain and electron-transfer reactions. Strained heterocycles, in particular, have emerged as a highly versatile and readily available class of radical precursors. The generation of carbinyl radicals of heterocycles has resulted in many elegant applications of heteroatom-centered radicals, such as beta fragmentations, cyclizations, and intramolecular hydrogen atom abstractions. Direct electron transfer to strained heterocycles has been realized through the use of arene radical anions. The method combines the virtues of radical and organometallic chemistry to yield useful functionalized organolithium compounds. Epoxides have been opened with high regioselectivity by titanocene(III) reagents in either stoichiometric or catalytic quantities to yield beta-titanoxy radicals. This development has resulted in many new applications in natural product synthesis.
Shifty moves: 1,n‐Enynes with propargyl alcohol, ether, or silyl ether units undergo gold(I)‐catalyzed intramolecular 1,(n−1)‐migration via allylgold cations (see scheme). These intermediates have been trapped by olefins, indole, and by a formal intramolecular CH insertion. In the case of aryl‐substituted 1,7‐enynes, a cascade process involving a Nazarov‐type cyclization leads to 6,7‐dihydro‐5H‐benzo[c]fluorenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.