We observe a long-range distortion field between parallel dislocations with opposite Burgers vectors in a platelet-shaped single crystal of 4H-SiC with a low dislocation density (~103 cm/cm3). This distortion field is in the µradian range when the distance D between dislocations is in the ~50–250 µm range. We were able to characterise this weak distortion field through Rocking Curve Imaging (RCI), a highly sensitive Bragg diffraction imaging technique using monochromatic synchrotron radiation. From the experimental images, we generate maps of the angle of maximum reflectance (“peak position”) that provide a measurement of the local lattice orientation. Deviations from the crystal matrix orientation are associated with the long-range distortion field around dislocations. Between parallel dislocations with opposite Burgers vectors, this distortion does not decay to zero but towards a constant value α. We propose a simple model considering the angular parameter α characterising the distortion. This model indicates that α should roughly vary as 1/D. This appears to be in fair agreement with our experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.