The aim was to study whether whole body vibration (WBV) combined with conventional resistance training (CRT) induces a higher increase in neuromuscular and hormonal measures compared with CRT or WBV, respectively. Twenty-eight young men were randomized in three groups; squat only (S), combination of WBV and squat (S+V) and WBV only (V). S+V performed six sets with eight repetitions with corresponding eight repetition maximum (RM) loads on the vibrating platform, whereas S and V performed the same protocol without WBV and resistance, respectively. Maximal isometric voluntary contraction (MVC) with electromyography (EMG) measurements during leg press, counter movement jump (CMJ) measures (mechanical performance) including jump height, mean power (Pmean), peak power (Ppeak) and velocity at Ppeak (Vppeak) and acute hormonal responses to training sessions were measured before and after a 9-week training period. ANOVA showed no significant changes between the three groups after training in any neuromuscular variable measured [except Pmean, S higher than V (P<0.05)]. However, applying t tests within each group revealed that MVC increased in S and S+V after training (P<0.05). Jump height, Pmean and Ppeak increased only in S, concomitantly with increased Vppeak in all groups (P<0.05). Testosterone increased during training sessions in S and S+V (P<0.05). Growth hormone (GH) increased in all groups but S+V showed higher responses than S and V (P<0.05). Cortisol increased only in S+V (P<0.05). We conclude that combined WBV and CRT did not additionally increase MVC and mechanical performance compared with CRT alone. Furthermore, WBV alone did not increase MVC and mechanical performance in spite of increased GH.
The effect of strength training and endogenously elevated hormone levels (plasma testosterone, growth hormone (GH) and cortisol) was studied in 16 young untrained males, divided into an arm only training group, A, and a leg plus arm training group, LA, in order to increase circulating levels of anabolic hormones. Both groups performed the same one-sided arm training for 9 weeks, twice a week. Group A trained only one arm (AT), the contralateral arm serving as control (AC), whereas group LA additionally trained their legs following the training of the one arm (LAT), with the contralateral arm serving as control (LAC). In spite of the attempt to match the two groups, the initial isometric arm strength was 20-25% lower for group LA compared to group A (significant for the arm to be trained). Isometric strength increased significantly in LAT and LAC by 37% and 10%, respectively, while the 9% and 2% increases in AT and AC, respectively, remained insignificant. Isokinetic strength increased at one out of three velocities tested for the trained arm relative to the untrained arm in both group A and group LA (P<0.05). Functional strength increased significantly by 20% in LAT, 18% in LAC, 19% in AT, and 17% in AC. Hormonal responses were monitored during the first and last training sessions. Resting hormone levels remained unchanged for both groups. However, during the first training session plasma testosterone as well as plasma cortisol increased significantly in group LA but not in group A. Plasma GH rose in all exercise tests, except during the last test in group LA, but was significantly higher in group LA than in group A in the first training session. In conclusion, a larger relative increase in isometric strength was found in the group having the highest hormonal response. However, due to the initial difference in isometric strength caution must be taken with the interpretation of this finding, which may only indicate a possible link between anabolic hormones and muscle strength with training.
Kvorning, Thue, Marianne Andersen, Kim Brixen, and Klavs Madsen. Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebo-controlled, and blinded intervention study. Am J Physiol Endocrinol Metab 291: E1325-E1332, 2006. First published July 25, 2006 doi:10.1152/ajpendo.00143.2006.-We hypothesized that suppression of endogenous testosterone would inhibit the adaptations to strength training in otherwise healthy men. Twenty-two young men with minor experience with strength training participated in this randomized, placebo-controlled, double-blinded intervention study. The subjects were randomized to treatment with the GnRH analog goserelin (3.6 mg) or placebo (saline) subcutaneously every 4 wk for 12 wk. The strength training period of 8 wk, starting at week 4, included exercises for all major muscles [3-4 sets per exercise ϫ 6 -10 repetitions with corresponding 6-to 10-repetition maximum (RM) loads, 3/wk]. A strength test, blood sampling, and whole body DEXA scan were performed at weeks 4 and 12. Endogenous testosterone decreased significantly (P Ͻ 0.01) in the goserelin group from 22.6 Ϯ 5.5 (mean Ϯ SD) nmol/l to 2.0 Ϯ 0.5 (week 4) and 1.1 Ϯ 0.6 nmol/l (week 12), whereas it remained constant in the placebo group. The goserelin group showed no changes in isometric knee extension strength after training, whereas the placebo group increased from 240.2 Ϯ 41.3 to 264.1 Ϯ 35.3 Nm (P Ͻ 0.05 within and P ϭ 0.05 between groups). Lean mass of the legs increased 0.37 Ϯ 0.13 and 0.57 Ϯ 0.30 kg in the goserelin and placebo groups, respectively (P Ͻ 0.05 within and P ϭ 0.05 between groups). Body fat mass increased 1.4 Ϯ 1.0 kg and decreased 0.6 Ϯ 1.2 kg in the goserelin and placebo groups, respectively (P Ͻ 0.05 within and between groups). We conclude that endogenous testosterone is of paramount importance to the adaptation to strength training.
We hypothesized that suppression of endogenous testosterone blunts mRNA expression post strength training (ST). Twenty-two young men were randomized for treatment with the GnRH analogue goserelin (3.6 mg every 4 weeks) or placebo for a period of 12 weeks. The ST period of 8 weeks started at week 4. Strength test, blood sampling, muscle biopsies, and whole-body dual-energy X-ray absorptiometry (DXA) scan were performed at weeks 4 and 12. Muscle biopsies were taken during the final ST session (pre, post 4 h, and post 24 h). Resting serum testosterone decreased significantly (P < 0.01) in the goserelin group from 22.6 ± 1.6 (mean ± S.E.M.) to 2.0 ± 0.1 nmol l −1 (week 4), whereas it remained unchanged in the placebo group. An acute increase of serum testosterone was observed during the final ST session in the placebo group (P < 0.05), whereas a decreased response was observed in the goserelin group (P < 0.05). mRNA expression of IGF-IE(bc) and myogenin increased, while expression of myostatin decreased (P < 0.01); however, no differences were observed between the groups. Muscle strength and muscle mass showed a tendency to increase more in the placebo group than in the goserelin group (P = 0.05). In conclusion, despite blocked acute responses of testosterone and 10-to 20-fold lower resting levels in the goserelin group, ST resulted in a similar mRNA expression of myoD, myogenin, IGF-IE(abc), myostatin and androgen receptor as observed in the placebo group. Therefore, in the present study, the molecular events were the same, despite divergent muscle hypertrophy and strength gains.
Participants felt they were more likely to perform well when stretching was performed as part of the warm-up, irrespective of stretch type. However, no effect of muscle stretching was observed on flexibility and physical function compared with no stretching. On the basis of the current evidence, the inclusion of short durations of either static or dynamic stretching is unlikely to affect sprint running, jumping, or change of direction performance when performed as part of a comprehensive physical preparation routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.