The first phytochemical investigation of Garcinia propinqua has led to the isolation and identification of three new compounds, including two rearranged benzophenones, doitunggarcinones A (1) and B (2), and a xanthone, doitunggarcinone C (3), together with seven known compounds (4-10). The structures of 1-3 were elucidated on the basis of spectroscopic methods, including UV, IR, NMR, and MS. The antibacterial activity of the 10 isolates was evaluated against Escherichia coli TISTR 780, Salmonella typhimurium TISTR 292, Staphylococcus aureus TISTR 1466, and methicillin-resistant Staphylococcus aureus (MRSA) SK1.
Four new carbazole alkaloids, clausenawallines C-F (1-4), along with 18 known compounds (5-22) were isolated from the roots of Clausena wallichii. Compounds 3, 9, and 22 exhibited significant antibacterial activity against methicillin-resistant Staphylococcus aureus SK1 (MRSA SK1) and Staph. aureus TISTR 1466 with MIC values in the range 4-16 μg/mL, whereas compound 4 showed the highest cytotoxicity against oral cavity cancer (KB) and small-cell lung cancer (NCI-H187) with IC(50) values of 10.2 and 4.5 μM, respectively.
A flexible method for the diastereoselective total synthesis of the pyrrolizidine alkaloids Uniflorine A, casuarine, australine, and 3-epi-australine and the unnatural epimer 3,7-di-epi-australine from a common chiral 2,5-dihydropyrrole precursor is described. A flexible method for the diastereoselective total synthesis of the pyrrolizidine alkaloids uniflorine A, casuarine, australine, and 3-epi-australine and the unnatural epimer 3,7-di-epi-australine from a common chiral 2,5-dihydropyrrole precursor is described.
Five new xanthones, garciniacowones A-E (1-5), together with 14 known xanthones, 6-19, were isolated from the young fruits and fresh flowers of Garcinia cowa. The structures of 1-5 were elucidated by analysis of their 1D and 2D NMR spectra and mass spectrometric data. The compounds 1-19 were tested in vitro for their antimicrobial activity and for their ability to inhibit α-glucosidase. Compounds 16 and 17 showed the most potent α-glucosidase inhibitory activity, with IC50 values of 7.8 ± 0.5 and 8.7 ± 0.3 μM, respectively. Compounds 8, 9, and 19 showed antibacterial activity against Bacillus subtilis TISTR 088 with identical MIC values of 2 μg/mL, while 8, 10, and 19 exhibited antibacterial activity against Bacillus cereus TISTR 688 with identical MIC values of 4 μg/mL.
The total synthesis of (+)-uniflorine A has allowed for the structural reassignment and the configurational assignment of the alkaloid (-)-uniflorine A from a 1,2,6,7,8-pentahydroxyindolizidine structure to (-)-(1 R,2 R,3 R,6 R,7 S,7a R)-1,2,6,7-tetrahydroxy-3-hydroxymethylpyrrolizidine (6- epi-casuarine).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.