Both hydrophilic and lipophilic therapeutics can be delivered successfully into deep and peripheral tissues such as cerebrospinal fluid and central nervous system by encapsulating them with crystalline lipids as lipospheres. The advent of lipospheres was meant to deliver both therapeutic moieties with enhanced efficacy and added stability to reach out intended tissue areas. Although extensive information is available on physicochemical, analytical and biopharmaceutical aspects of lipospheres, there was no specific order pertaining to critical composition and rationale of component selection available for academic and pilot scale processing of lipospheres. With the interest of compiling key points in a typical formulation of lipid lipospheres, this article was intrigued to discuss melt method, co-solvent, microemulsion, super critical fluid, spray drying and spray congealing techniques that were employed to scale up lipospheres. The selection criteria for both the drugs and lipids in liposphere formulations were demonstrated here. The quality assessment with variables like loading capacity and entrapment efficiency was explained. A note on preliminary screening factors to determine the liposphere formation such as liposphere dimensions with morphological scenario was detailed in this article. This article also includes the stability and storage issues with reference to photolysis. The marked differential in enhancing solubility and permeability characteristics of Class II and IV drug candidates by liposphere delivery systems with an evident of in vivo outcomes were emphasized.
Background:The aim of the study was to develop piroxicam-Aloe vera gel (PAG) formulation and make a pharmacodynamic evaluation of the formulation.Materials and Methods:The gel was prepared by using carbopol 934 as gelling agent and methyl paraben as a preservative in an Aloe vera gel base. The formulated gel was also evaluated for physicochemical parameters like pH, viscosity, drug content, and in vitro diffusion assessment. Pharmacodynamic activity of the formulation was evaluated in Wistar albino rats. The formulated gel was compared with that of similar marketed gel (commercial piroxicam gel (CPG)) against the same parameters.Results:From in vitro studies, an effective drug release from PAG was observed to be 68.17% when compared with that of the CPG (62.71%) at 180 min indicating better drug release from the gel formulated in this study. Percentage inhibition of edema was greater for the preparation of PAG (29.57 mean percent inhibition after 60 min) compared to marketed gel which exhibited 18.3% after 60 min.Conclusion:It was concluded from the results that the Aloe vera gel acts as an effective gel base to prepare piroxicam gel with high drug loading capacity and improved anti-inflammatory effect. From the statistical analysis the formulation of PAG showed better release than the CPG at p < 0.05 level of significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.