To gain a better understanding of Ca(2+)-induced Ca2+ release in central neurons, we have studied the increase in intracellular Ca2+ concentration ([Ca2+]i) induced by application of caffeine to cells cultured from embryonic mouse telencephalon (hippocampus or cortex). The magnitudes and distributions of changes in [Ca2+]i in neuron somata were measured by quantitative video microscopy. We observed that application of caffeine to pyramidally shaped neurons typically initiated an increase in [Ca2+]i in the cytoplasmic region between the nucleus and the base of a major dendrite. [Ca2+] in this region increased over a period of 3 to 6 s and was followed by, with a slight delay, a surge of Ca2+ that moved across the soma and into or over the nucleus. Similar Ca2+ responses to caffeine were observed in Ca(2+)-containing and nominally Ca(2+)-free external solutions, suggesting that caffeine was inducing Ca2+ release from intracellular stores. Ca2+ responses to caffeine were potentiated by inducing a tonic Ca2+ influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors activated by 0.3 microM glutamate and multiple responses to caffeine could be elicited by using this Ca2+ influx to refill the intracellular stores. Ryanodine inhibition of caffeine-induced Ca2+ release was use- and concentration-dependent; the median effective concentration EC50 for ryanodine declined from 22 microM for the first application of caffeine to 20 nM for the fourth. We conclude, based on these responses to caffeine, that ryanodine-sensitive mechanisms of intracellular Ca2+ release are active in hippocampal and cortical neurons and may be involved in generation of directed Ca2+ waves that engulf the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.