The Time-delay Added Evolutionary Forecasting (TAEF) approach is a new method for time series prediction that performs an evolutionary search for the minimum number of dimensions necessary to represent the underlying information that generates the time series. The methodology proposed is inspired in Takens theorem and consists of an intelligent hybrid model composed of an artificial neural network combined with a modified genetic algorithm. Initially, the TAEF method finds the best fitted model to forecast the series and then performs a behavioral statistical test in order to adjust time phase distortions that may appear in the representation of some series. An experimental investigation conducted with relevant time series show the robustness of the method through a comparison, according to several performance measures, to previous results found in the literature and those obtained with more traditional methods.
It is crucial for the wine industry to have methods like electronic nose systems (E-Noses) for real-time monitoring thresholds of acetic acid in wines, preventing its spoilage or determining its quality. In this paper, we prove that the portable and compact self-developed E-Nose, based on thin film semiconductor (SnO2) sensors and trained with an approach that uses deep Multilayer Perceptron (MLP) neural network, can perform early detection of wine spoilage thresholds in routine tasks of wine quality control. To obtain rapid and online detection, we propose a method of rising-window focused on raw data processing to find an early portion of the sensor signals with the best recognition performance. Our approach was compared with the conventional approach employed in E-Noses for gas recognition that involves feature extraction and selection techniques for preprocessing data, succeeded by a Support Vector Machine (SVM) classifier.The results evidence that is possible to classify three wine spoilage levels in 2.7 seconds after the gas injection point, implying in a methodology 63 times faster than the results obtained with the conventional approach in our experimental setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.