Microwave Imaging (MWI) is an emerging medical imaging technique, which has been studied to aid breast cancer diagnosis in the frequency range from 0.5 to 30 GHz. The information about the dielectric properties of each tissue is essential to assess the viability of this type of systems. However, accurate measurements of heterogeneous tissues can be very challenging, and the current available information is still very limited. In this paper, we present a methodology for extracting dielectric properties to create anatomical models of the axillary region. These models will be used in a MWI device to aid breast cancer diagnosis through the detection of metastasised axillary lymph nodes. We apply segmentation tools to Magnetic Resonance Images (MRI) of the breast and assign dielectric properties to each tissue, extracting preliminary information about the properties of axillary lymph nodes. This study may open a way to more quickly extract dielectric properties of tissues and/or validate measurements, accelerating the development of microwave-based medical devices.
Purpose: Microwave imaging (MWI) has been studied as a complementary imaging modality to improve sensitivity and specificity of diagnosis of axillary lymph nodes (ALNs), which can be metastasized by breast cancer. The feasibility of such a system is based on the dielectric contrast between healthy and metastasized ALNs. However, reliable information such as anatomically realistic numerical models and matching dielectric properties of the axillary region and ALNs, which are crucial to develop MWI systems, are still limited in the literature. The purpose of this work is to develop a methodology to infer dielectric properties of structures from magnetic resonance imaging (MRI), in particular, ALNs. We further use this methodology, which is tailored for structures farther away from MR coils, to create MRI-based numerical models of the axillary region and share them with the scientific community, through an open-access repository. Methods:We use a dataset of breast MRI scans of 40 patients, 15 of them with metastasized ALNs. We apply image processing techniques to minimize the artifacts in MR images and segment the tissues of interest. The background, lung cavity, and skin are segmented using thresholding techniques and the remaining tissues are segmented using a K-means clustering algorithm. The ALNs are segmented combining the clustering results of two MRI sequences. The performance of this methodology was evaluated using qualitative criteria. We then apply a piecewise linear interpolation between voxel signal intensities and known dielectric properties, which allow us to create dielectric property maps within an MRI and consequently infer ALN properties. Finally, we compare healthy and metastasized ALN dielectric properties within and between patients, and we create an open-access repository of numerical axillary region numerical models which can be used for electromagnetic simulations. Results:The proposed methodology allowed creating anatomically realistic models of the axillary region, segmenting 80 ALNs and analyzing the corresponding dielectric properties. The estimated relative permittivity of those ALNs ranged from 16.6 to 49.3 at 5 GHz. We observe there is a high variability of
Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.