Abstract:In this paper, we report the synthesis and biological evaluation of picolylamide-based diselenides with the aim of developing a new series of diselenides with O···Se non-bonded interactions. The synthesis of diselenides was performed by a simple and efficient synthetic route. All the products were obtained in good yields and their structures were determined by 1 H-NMR, 13 C-NMR and HRMS. All these new compounds showed promising activities when tested in different antioxidant assays. These amides exhibited strong thiol peroxidase-like (TPx) activity. In fact one of the compounds showed 4.66 times higher potential than the classical standard i.e., diphenyl diselenide. The same compound significantly inhibited iron (Fe)-induced thiobarbituric acid reactive species (TBARS) production in rat's brain homogenate. In addition, the X-ray structure of the most active
OPEN ACCESSMolecules 2015, 20 10096 compound showed non-bonded interaction between the selenium and the oxygen atom that are in close proximity and may be responsible for the increased antioxidant activity. The present study provides evidence about the possible biochemical influence of nonbonding interactions on organochalcogens potency.
The efficient and mild copper-catalyzed synthesis of unsymmetrical diorganyl chalcogenides under ligand- and solvent-free conditions is described. The cross-coupling reaction was performed using aryl boric acids and 0.5 equiv. of diorganyl dichalcogenides (Te/Se/S) in the presence of 3 mol % of CuI and 3 equiv. of DMSO, under microwave irradiation. This new protocol allowed the preparation of several unsymmetrical diorganyl chalcogenides in good to excellent yields.
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.