Ionic liquids have been on the spotlight of chemical research field in the last decades. Their physical properties (low vapor pressure, thermal stability, and conductivity) and the possibility of fine tuning make them a versatile class of compounds for a wide range of applications, such as catalysis, energy, and material sciences. Ionic liquids can establish multiple intermolecular interactions with solutes such as electrostatic, van der Waals, or hydrogen bonds. The prospect of designing ionic liquid structures toward specific applications has attracted the attention to these alternative solvents. However, their rational design demands a molecular detailed view, and Nuclear Magnetic Resonance is a unique and privileged technique for this purpose, as it provides atomic resolution and at the same time enables the study of dynamic information. In this chapter, we provide an overview about the application of Nuclear Magnetic Resonance spectroscopy techniques as a methodology for the rational design of ionic liquids as solvents for small organic compounds, CO 2 capture, and polymers such as cellulose focusing mainly in the last 10 years.
Melanins play a fundamental role in the biology and ecology of several fungal species. Unfortunately, this group of amorphous macromolecules also severely (and most times irreversibly) stains cultural heritage objects. Despite efforts made throughout the years, knowledge of the chemical composition and structure of melanins is still insufficient, which hampers the task of safely cleaning these colourants from cultural heritage materials in a targeted way without causing further deterioration. This work aimed therefore to contribute towards enlightening the characteristics of fungal melanins from three fungi that are common paper colonizers: Aspergillus niger, Chaetomium globosum and Cladosporium cladosporioides. The extracted melanins were characterized by FTIR, Raman, UV-vis, Solid-State NMR and MALDI-TOF MS spectroscopies and the effect of inhibitors of DHN-melanin and DOPA-melanin pathways on colony pigmentation and growth was evaluated. Although all the extracted colourants show a predominantly aromatic structure with carbonyl and phenolic groups, some differences between the melanins can be highlighted. Melanins obtained from Ch. globosum and Cl. cladosporioides exhibited similar structures and composition and both presented DHN-melanin characteristics, while A. niger’s melanins revealed a more complex and ordered structure, with a higher prevalence of highly conjugated carbonyls than the others, besides the additional presence of a yellow/green component. These conclusions cannot be overlooked while selecting targeted cleaning methodologies for melanin stains on cultural heritage materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.