The synthesis and self-assembly of tetragonal phase-containing L1 0 -Fe 55 Pt 45 nanorods with high coercive field is described. The experimental procedure resulted in a tetragonal/cubic phase ratio close to 1 : 1 for the as-synthesized nanoparticles. Using different surfactant/solvent proportions in the process allowed control of particle morphology from nanospheres to nanowires. Monodisperse nanorods with lengths of 60 ± 5 nm and diameters of 2-3 nm were self-assembled in a perpendicular oriented array onto a substrate surface using hexadecylamine as organic spacer. Magnetic alignment and properties assigned, respectively, to the shape anisotropy and the tetragonal phase suggest that the self-assembled materials are a strong candidate to solve the problem of random magnetic alignment observed in FePt nanospheres leading to applications in ultrahigh magnetic recording (UHMR) systems capable of achieving a performance of the order of terabits/in 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.