KeywordsPharmacovigilance, ADR, adverse drug reactions, drug safety, in silico pharmacology.
Key Points• Progress in pharmacovigilance demands new methods to further improve data exploration from traditional spontaneous reporting systems. Advanced tools are in 2 place to mine data from general practitioners research databases, establishing useful connections to other well-known resources.• Web services for the analysis of drug-event associations were developed, requiring the implementation of service composition strategies to foster interoperability within the pharmacovigilance software ecosystem.
Falls among older people remain a very important public healthcare issue. Every year over 11 million falls are registered in the U.S. alone. This paper presents a practical real time fall detection system running on a smartwatch (F2D). A decision module takes into account the rebound after the fall and the residual movement of the user, matching a detected fall pattern to an actual fall. The final decision of a fall event is taken based on the location of the user. To the best of our knowledge, this is the first fall detection system which works on an independent smartwatch, being less stigmatizing for the end user. The fall detection algorithm has been tested by Fondation Suisse pour les Téléthèses (FST), the project partner who is responsible for the commercialization of our system. By analyzing real data of activities of daily life of elderly people, we are confident that F2D meets the demands of a reliable and easily extensible system. This paper highlights the innovative algorithm which takes into account the residual movement and the location of the user to increase the fall detection accuracy. By testing with real data we have a fall detection system ready to be deployed on the market.
Pharmacovigilance plays a key role in the healthcare domain through the assessment, monitoring and discovery of interactions amongst drugs and their effects in the human organism. However, technological advances in this field have been slowing down over the last decade due to miscellaneous legal, ethical and methodological constraints. Pharmaceutical companies started to realize that collaborative and integrative approaches boost current drug research and development processes. Hence, new strategies are required to connect researchers, datasets, biomedical knowledge and analysis algorithms, allowing them to fully exploit the true value behind state-of-the-art pharmacovigilance efforts. This manuscript introduces a new platform directed towards pharmacovigilance knowledge providers. This system, based on a service-oriented architecture, adopts a plugin-based approach to solve fundamental pharmacovigilance software challenges. With the wealth of collected clinical and pharmaceutical data, it is now possible to connect knowledge providers’ analysis and exploration algorithms with real data. As a result, new strategies allow a faster identification of high-risk interactions between marketed drugs and adverse events, and enable the automated uncovering of scientific evidence behind them. With this architecture, the pharmacovigilance field has a new platform to coordinate large-scale drug evaluation efforts in a unique ecosystem, publicly available at http://bioinformatics.ua.pt/euadr/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.