The copper wire has some advantages in thermal performance, mechanical performance, and low cost, which make it can provide the lowest cost flip-chip(FC) package for low I/O density device. The 2D Cu stud bump finite element model was set up by using ANSYS/LS-DYNA with LOLID162 element to dynamic simulate the Cu stud bump bonding shaping process. The stress distribution in the Cu stud bump and the pad during the bonding process were studied, and the influence of pad thickness on the stress distribution of Si chip was also analyzed. The results shows that under the bonding process the Cu bump height is mainly influenced by the bonding pressure and the top shape of the Cu bump is influenced by ultrasonic energy, the increase of pad thickness results in reducing stress concentration inside the Si chip.
In the thermal design of embedded multi-chip module (MCM), the placement of chips has a significant effect on temperature field distributing, thus influences the reliability of the embedded MCM. The thermal placement optimization of chips in embedded MCM was studied in this paper, the goal of this work is to decrease temperature and achieve uniform thermal field distribution within embedded MCM. By using ANSYS the finite element analysis model of embedded MCM was developed, the temperature field distributing was calculated. Based on genetic algorithms, chips placement optimization algorithm of embedded MCM was proposed and the optimization chips placement of embedded MCM was achieved by corresponding optimization program. To demonstrate the effectiveness of the obtained optimization chips placement, finite element analysis (FEA) was carried out to assess the thermal field distribution of the optimization chips placement in embedded MCM by using ANSYS. The result shows that without chips placement optimizing the maximum temperature and temperature difference in embedded MCM model are 87.963°C and 2.189°C respectively, by using chips placement optimization algorithm the maximum temperature drop than the original 0.583°C and the temperature difference is only 0.694°C . It turns out that the chip placement optimization approach proposed in this work can be effective in providing thermal optimal design of chip placement in embedded MCM.
This paper demonstrates the operating characteristics of a ka-band magnetron-type slotted peniotron. The third-harmonic four-vane peniotron operates in a circularly polarized 2π mode. We have compared the results between theoretical analysis and PIC simulation of the peniotron. The results show that, with proper acceleration voltage and beam current, the peniotron is predicted to generate a pure 2π mode electromagnetic wave, and the theoretical analysis predicted and PIC simulation demonstrated output power are as high as 52 kW and 45 kW at 29.7 GHz, respectively.
In this paper, ANSYS-LSDYNA simulation software is used to build the three-dimensional finite element model of the ball bond and to get the Von Mises stress. The change of stress about the bump is researched which base on the model in different bonding pressure, bonding power and bonding time. The result show that: The stress increase with bonding pressure increase within a certain bonding pressure range, and then the stress will maintain a table number, however, the stress will continue to increase when the bonding pressure reach a certain value; increasing the bonding power, the area of lager stress will grow; prolonging the bonding time, the stress of the pad will increase with time, but when time increase to a certain value, the stress of the pad will not increase over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.