Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
The purpose of this study was to investigate the effects of valdecoxib on the retina in retinal ischemia-reperfusion injury (IRI) and R28 cells following oxygen-glucose deprivation/recovery (OGD/R) injury, as well as the underlying mechanisms. Immunofluorescence and Cell Counting Kit-8 (CCK-8) analyses were used to identify the proper timepoint and concentration of valdecoxib’s protective effect on the R28 cells in the OGD/R model. Hematoxylin-eosin (HE) staining and immunofluorescence were used to explore valdecoxib’s effect on the retina and retina ganglion cell (RGC) in IRI. Cell apoptosis was determined by a TUNEL Apoptosis Detection Kit and Annexin V-FITC/PI flow cytometry. The expression levels of p-PERK, transcription factor 4 (ATF4), GRP78, CHOP, cleaved caspase 3, bax and bcl-2 were measured by Western blot analyses. The valdecoxib protected the R28 cells from OGD/R injury by decreasing the cell apoptosis rate, and it exerted a protective effect on retinas in I/R injury by inhibiting RGC apoptosis. The valdecoxib pretreatment reversed the expression of p-PERK, ATF4, CHOP, GRP78, cleaved caspase 3 and bax induced by the glaucomatous model. Meanwhile, the CCT020312 reversed the valdecoxib’s anti-apoptosis effect by activating PERK-ATF4-CHOP pathway-mediated endoplasmic reticulum (ER) stress. These findings suggest that valdecoxib protects against glaucomatous injury by inhibiting ER stress-induced apoptosis via the inhibition of the PERK-ATF4-CHOP pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.