Gallotannins (GTs) are a series of hydrolyzable tannins with multiple health-promoting effects. In this study, an integrated liquid chromatography tandem mass spectrometry (LC–MS/MS) strategy was developed for unveiling the spatial distribution pattern of GTs in the emerging oilseed crops Paeonia rockii and P. ostii. According to the fragmentation behavior of the representative GT (1,2,3,4,6-penta-O-galloyl-β-D-glucose, PGG), the diagnostic neutral loss (NL) of 170 Da was chosen for the non-targeted screening of GT precursors. Simultaneously, the tandem mass spectrometry spectrum (MS/MS) information was acquired through an enhanced product ion (EPI) scan. Nine major GTs were identified in tree peony. To quantify the targeted GTs in different tissues of tree peony, we established a multiple reaction monitoring (MRM)–enhanced product ion (EPI)-based pseudo-targeted approach under the information-dependent acquisition (IDA) mode. The quantitative results show that the GT compounds were ubiquitous in tree peony plants with diverse structures. The typical GT PGG was mainly distributed in roots, leaves, and petals. This strategy can also be utilized for metabolite characterization and quantification in other substrates.
Apples are a rich source of polyphenols in the human diet. However, the distribution of polyphenols in different apple varieties and tissues is still largely unclear. In this study, a new liquid chromatography–tandem mass spectrometry (LC-MS/MS) strategy was developed to reveal the spatial distribution of polyphenols in different apple tissues and varieties. A method based on multiple reaction monitoring (MRM)-enhanced product ion (EPI) was established in the information-dependent acquisition (IDA) mode for pseudo-target screening of major apple polyphenols. A total of 39 apple polyphenolic metabolites were finally identified. Qualitative and quantitative results showed that the variety and content of polyphenols in apple peels were higher than those of other tissues. In apple roots, stems, and leaves, the highest polyphenol variety and content were found in wild species, followed by cultivars and elite varieties. Dihydrochalcone substances, one kind of major apple polyphenols, were more abundant in apple roots, stems, and leaves. This strategy can be applied as a model for other agricultural products, in addition to revealing the distribution of polyphenols in different tissues of apples, which provides a theoretical basis for the utilization of polyphenol resources and variety selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.