We study how links are formed in social networks. In particular, we focus on investigating how a reciprocal (two-way) link, the basic relationship in social networks, is developed from a parasocial (one-way) relationship and how the relationships further develop into triadic closure, one of the fundamental processes of link formation.We first investigate how geographic distance and interactions between users influence the formation of link structure among users. Then we study how social theories including homophily, social balance, and social status are satisfied over networks with parasocial and reciprocal relationships. The study unveils several interesting phenomena. For example, "friend's friend is a friend" indeed exists in the reciprocal relationship network, but does not hold in the parasocial relationship network.We propose a learning framework to formulate the problems of predicting reciprocity and triadic closure into a graphical model. We demonstrate that it is possible to accurately infer 90% of reciprocal relationships in a Twitter network. The proposed model also achieves better performance (+20-30% in terms of F1-measure) than several alternative methods for predicting the triadic closure formation.
In many social networks, there exist two types of users that exhibit different influence and different behavior. For instance, statistics have shown that less than 1% of the Twitter users (e.g. entertainers, politicians, writers) produce 50% of its content [1], while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior.In this paper, we define and explore a novel problem called community kernel detection in order to uncover the hidden community structure in large social networks. We discover that influential users pay closer attention to those who are more similar to them, which leads to a natural partition into different community kernels.We propose GREEDY and WEBA, two efficient algorithms for finding community kernels in large social networks. GREEDY is based on maximum cardinality search, while WEBA formalizes the problem in an optimization framework. We conduct experiments on three large social networks: Twitter, Wikipedia, and Coauthor, which show that WEBA achieves an average 15%-50% performance improvement over the other state-of-the-art algorithms, and WEBA is on average 6-2,000 times faster in detecting community kernels.
Interpersonal ties are responsible for the structure of social networks and the transmission of information through these networks. Different types of social ties have essentially different influences on people. Awareness of the types of social ties can benefit many applications, such as recommendation and community detection. For example, our close friends tend to move in the same circles that we do, while our classmates may be distributed into different communities. Though a bulk of research has focused on inferring particular types of relationships in a specific social network, few publications systematically study the generalization of the problem of predicting social ties across multiple heterogeneous networks. In this work, we develop a framework referred to as TranFG for classifying the type of social relationships by learning across heterogeneous networks. The framework incorporates social theories into a factor graph model, which effectively improves the accuracy of predicting the types of social relationships in a target network by borrowing knowledge from a different source network. We also present several active learning strategies to further enhance the inferring performance. To scale up the model to handle really large networks, we design a distributed learning algorithm for the proposed model. We evaluate the proposed framework (TranFG) on six different networks and compare with several existing methods. TranFG clearly outperforms the existing methods on multiple metrics. For example, by leveraging information from a coauthor network with labeled advisor-advisee relationships, TranFG is able to obtain an F1-score of 90% (8%--28% improvements over alternative methods) for predicting manager-subordinate relationships in an enterprise email network. The proposed model is efficient. It takes only a few minutes to train the proposed transfer model on large networks containing tens of thousands of nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.