The interpolation, prediction, and feature analysis of fine-gained air quality are three important topics in the area of urban air computing. The solutions to these topics can provide extremely useful information to support air pollution control, and consequently generate great societal and technical impacts. Most of the existing work solves the three problems separately by different models. In this paper, we propose a general and effective approach to solve the three problems in one model called the Deep Air Learning (DAL). The main idea of DAL lies in embedding feature selection and semi-supervised learning in different layers of the deep learning network. The proposed approach utilizes the information pertaining to the unlabeled spatio-temporal data to improve the performance of the interpolation and the prediction, and performs feature selection and association analysis to reveal the main relevant features to the variation of the air quality. We evaluate our approach with extensive experiments based on real data sources obtained in Beijing, China. Experiments show that DAL is superior to the peer models from the recent literature when solving the topics of interpolation, prediction, and feature analysis of fine-gained air quality.
This lecture note reviews recently proposed sparse-modeling approaches for efficient ab initio many-body calculations based on the data compression of Green's functions. The sparsemodeling techniques are based on a compact orthogonal basis representation, intermediate representation (IR) basis functions, for imaginary-time and Matsubara Green's functions. A sparse sampling method based on the IR basis enables solving diagrammatic equations efficiently. We describe the basic properties of the IR basis, the sparse sampling method and its applications to ab initio calculations based on the GW approximation and the Migdal-Eliashberg theory. We also describe a numerical library for the IR basis and the sparse sampling method, irbasis, and provide its sample codes. This lecture note follows the Japanese review article [H. Shinaoka et al., Solid State Physics 56(6), 301 (2021)].
Abstract. Multi-view learning techniques are necessary when data is described by multiple distinct feature sets because single-view learning algorithms tend to overfit on these high-dimensional data. Prior successful approaches followed either consensus or complementary principles. Recent work has focused on learning both the shared and private latent spaces of views in order to take advantage of both principles. However, these methods can not ensure that the latent spaces are strictly independent through encouraging the orthogonality in their objective functions. Also little work has explored representation learning techniques for multiview learning. In this paper, we use the denoising autoencoder to learn shared and private latent spaces, with orthogonal constraints -disconnecting every private latent space from the remaining views. Instead of computationally expensive optimization, we adapt the backpropagation algorithm to train our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.