Background
Osteoarthritis (OA) is one kind of degenerative joint disease that happens in articular cartilage and other joint tissues. Long non-coding RNAs (lncRNAs) have been reported to serve as pivotal regulators in many diseases, including OA. However, the role and relevant regulatory mechanisms of CASC19 in OA remain unknown.
Methods
The expression levels of CASC19, miR-152-3p, and DDX6 were identified by reverse-transcription polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. The relationship between miR-152-3p and CASC19 or DDX6 was predicted by bioinformatics tools and verified by the dual-luciferase reporter assay.
Results
CASC19 was verified to exhibit higher expression in OA tissues and cells. Moreover, inhibition of CASC19 weakened proinflammatory cytokine (IL-6, IL-8, and TNF-α) production and cell apoptosis but facilitated cell viability. Experiments of the ceRNA mechanism elucidated that miR-152-3p was a sponge for CASC19, and miR-152-3p targeted DDX6, suggesting that CASC19 sponged miR-152-3p to release DDX6. Finally, results from rescue assays proved that the impacts of CASC19 silencing on chondrocytes apoptosis and proinflammatory cytokine production could be reversed by DDX6 overexpression.
Conclusions
It was concluded that lncRNA CASC19 accelerated chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. These findings may offer an effective biological target for OA treatment.
Mixed ligand of H2ip and L assembled with Zn(NO3)2 ·6H2O under solvothermal conditions provided a novel Zn(II) compound formulated as [Zn(ip)(L)] (1, H2ip = isophthalic acid, L is 4-[4-(1H-imidazol-1-yl)phenyl]-2,
6-bis(pyridin-4-yl)pyridine). This compound’s emission performances in solid state were also explored at RT. In the biological section, the as-created complex’s application values against tendon bone healing were discussed, and the mechanism was researched simultaneously. First,
activation of the Wnt signaling pathway in bone tissue was examined by real-time reverse transcription-polymerase chain reaction. Second, quantitative computed tomography was performed to measure the bone density of the animal after compound treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.