Regulation of the elongation phase of transcription by RNA Polymerase II (Pol II) is utilized extensively to generate the pattern of mRNAs needed to specify cell types and to respond to environmental changes. After Pol II initiates, negative elongation factors cause it to pause in a promoter proximal position. These polymerases are poised to respond to the positive transcription elongation factor, P-TEFb, and then enter productive elongation only under the appropriate set of signals to generate full length properly processed mRNAs. Recent global analyses of Pol II and elongation factors, mechanisms that regulate P-TEFb involving the 7SK snRNP, factors that control both the negative and positive elongation properties of Pol II and the mRNA processing events that are coupled with elongation are discussed.
Summary Most human genes are loaded with promoter proximally paused RNA polymerase II (Pol II) molecules that are poised for release into productive elongation by P-TEFb. We present evidence that Gdown1, a protein that renders Pol II responsive to mediator, is involved in Pol II elongation control. During in vitro transcription assays Gdown1 specifically blocked elongation stimulation by TFIIF, inhibited the termination activity of TTF2, and influenced pausing factors NELF and DSIF, but did not affect the function of TFIIS or the mRNA capping enzyme. Without P-TEFb, Gdown1 led to the production of stably paused polymerases in the presence of nuclear extract. Supporting these mechanistic insights, ChIP-Seq demonstrated that Gdown1 mapped over essentially all poised polymerases across the human genome. Our results establish that Gdown1 increases the stability of poised polymerases while maintaining their responsiveness to P-TEFb and suggest that mediator overcomes a Gdown1-mediated block of initiation by allowing TFIIF function.
SUMMARY The TFAP2C/AP-2γ transcription factor regulates luminal breast cancer genes and loss of TFAP2C induces epithelial-mesenchymal transition. By contrast, the highly homologous family member, TFAP2A, lacks transcriptional activity at luminal gene promoters. A detailed structure-function analysis identified that sumoylation of TFAP2A blocks its ability to induce the expression of luminal genes. Disruption of the sumoylation pathway by knockdown of sumoylation enzymes, mutation of the SUMO-target lysine of TFAP2A, or treatment with sumoylation inhibitors induced a basal to luminal transition, which was dependent upon TFAP2A. Sumoylation inhibitors cleared the CD44+/hi/CD24−/low cell population characterizing basal cancers and inhibited tumor outgrowth of basal cancer xenografts. These findings establish a critical role for sumoylation in regulating the transcriptional mechanisms that maintain the basal cancer phenotype.
Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-β signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-β signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.