Transient numerical simulations were carried out by placing dimples at the top, sides and bottoms of the tail car streamline area of a high-speed maglev train. The results of an improved delayed detached eddy simulation turbulence model using three-dimensional compressible Navier-Stokes and shear-stress transport K-Omega double equations were compared to the results of a wind tunnel test to verify the numerical simulation accuracy, within 5% of the ground truth, which is an acceptable precision range. The results show that dimples arranged on the streamline area atop the train tail car affected the locations at which the airflow at the top and bottom of the train met and weakened the strength of the wake. The aerodynamic drag and lift coefficient decreased by 3.40% and 4.27%, respectively. When the dimples were arranged on the streamline area at the sides or bottoms of the train tail car, they had little effect on the top of the tail car, so they did not destroy the balance of the airflow at the top and bottom. They also had little influence on the development of wake topology. Therefore, the aerodynamic drag and lift of the train changed little.
Scenario models of a moving subway train can help investigate the influence of different fire locations on smoke propagation characteristics in curved tunnels. To this end, this study adopts the three-dimensional Unsteady Reynolds Average Navier-Stokes equations method and the renormalization group k-ε two-equation turbulence model with buoyancy correction for numerical analysis. The motion of the train is replicated using the slip grid technique. The results indicate that when a fire breaks out on a moving train in tunnels, the piston wind leads the longitudinal movement of the smoke. If a fire erupts in the head or middle car of a moving train, the time of smoke backflow is delayed by 30 s or 17 s, respectively, compared to that for the tail car. The obtained results provide a theoretical basis for reasonably controlling the smoke flow in subway tunnels and reducing casualties in fire accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.