In the tire industry, the combination of carbon black and silica is commonly utilized to improve the comprehensive performance of natural rubber so as to realize the best performance and cost-effectiveness. The corresponding mixing is divided into three processes (initial mixing, delivery, reactive mixing) by the serial modular continuous mixing method, thus achieving more accurate control of the mixing process, higher production efficiency and better performance. Moreover, the optimization of serial modular continuous mixing process parameters can not only improve the performance of composite materials, but help people understand the physical and chemical changes and the reinforcing mechanism of fillers in the mixing process. In this paper, the relationship among the parameters of eight processes and filler network structure, tensile strength, chemical reinforcing effect and tear resistance was explored through experiments. The deep causes of performance changes caused by parameters were analyzed. Consequently, the best process condition and the ranking of the influencing factors for a certain performance was obtained. Furthermore, the best preparation process of natural rubber (NR)/carbon black/silica composite was achieved through comprehensive analysis.In modern industry, batch internal mixers are usually utilized to prepare carbon black/silica/rubber composite materials. After the first stage of mixing and dumping, the second stage of mixing is needed in order to realize a sufficient silanization reaction and control the heat load of rubber mixing. However, achieving acceptable performance also wastes energy and time [13][14][15][16][17][18][19]. In recent years, many scholars and companies have contributed to developing continuous mixers, such as the Farrell continuous mixer, the twin-shaft continuous mixer, the Buss Kneader continuous mixer, and the co-rotating twin screw continuous mixer [20][21][22][23]. Nevertheless, due to the structural limitations of the feeding port of the above continuous mixers, only powdery and granular materials are able to be added, except for block rubber. As a result, these continuous mixers are mostly applied in the plastic industry [24][25][26][27][28]. In addition, even though granular rubber is used as the raw material regardless of cost, the accuracy of the ratio of raw rubber and filler is hard to ensure with these continuous mixing methods. Consequently, based on the requirements of modern industrial continuous rubber mixing, a serial modular continuous mixer (SMCM) has been designed by Professor Wang [29]. The modular design ensures the accuracy of the ratio, and also has a good residence time, temperature control, and exhaust. The core components are the initial mixing rotors and the core reaction mixing twin rotors. The special geometry causes these components to produce elongational forces except shear stress to the compound, which enhances the dispersion effect and reaction extent. Previous studies have shown that, compared to two-stage mixing, the serial process ...
Purpose This purpose of this study was to develop a 3D printer based on powder particle. The best degreasing and sintering process of a blank body was investigated to obtain a metal product with high precision and high surface finish. This process will greatly reduce the difficulty and cost of forming a complex metal product with high application value. Design/methodology/approach Stainless steel powder and polymer materials were mixed using a rubber mixing machine. The powders were granulated to prepare a mixed material. A powder feed 3D printer was used at low temperature (about 200°C) to print and degrease the body. A series of sintering experiments were performed to study the different sintering temperatures, and the physical and mechanical properties of the sample sintered under various conditions were compared to determine the best degreasing and sintering process. Findings The reaction at 1,370°C was the optimal route for the metal billet degreasing. The resulting metal products had fine structure and stable performance compared with the products with traditional powder metallurgy composition. Originality/value Most 3D printed metal powder materials rely on imports, which are expensive and increase the manufacturing cost. These drawbacks limit the application and development of metal 3D printing technology to a certain extent. The successful study of this molding method greatly reduces the difficulty and cost of forming complex metal products with high application value. This report will provide valuable guidance for sintering process and forming methods.
In this study, the graphene oxide/silica/natural latex composites were prepared by four different processes, including spray sputtering drying method, dry-ice–expansion predispersion method, mechanical stirring method, and traditional drying method. Compared to the other three methods, the spray sputtering method had higher physical mechanical properties and better silica dispersion in the rubber matrix. Meanwhile, the cross-linking density of vulcanizates prepared by the spray sputtering drying method is the largest. Compared with the compound prepared by mechanical stirring, the tensile strength, tear strength, and wear resistance property of the compound prepared by spray sputtering drying method increased by 13.6%, 31.5%, and 16.7%, respectively. The tensile strength, tear strength, and wear resistance property of the compound prepared by spray sputtering drying method increased by 27.2%, 43.6%, and 24.6%, respectively, than those prepared by dry mixing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.