Alternatively activated (M2) macrophages play critical roles in diverse chronic diseases, including parasite infections, cancer, and allergic responses. However, little is known about the acquisition and maintenance of their phenotype. We report that M2-macrophage marker genes are epigenetically regulated by reciprocal changes in histone H3 lysine-4 (H3K4) and histone H3 lysine-27 (H3K27) methylation; and the latter methylation marks are removed by the H3K27 demethylase Jumonji domain containing 3 (Jmjd3). We found that continuous interleukin-4 (IL-4) treatment leads to decreased H3K27 methylation, at the promoter of M2 marker genes, and a concomitant increase in Jmjd3 expression. Furthermore, we demonstrate that IL-4-dependent Jmjd3 expression is mediated by STAT6, a major transcription factor of IL-4-mediated signaling. After IL-4 stimulation, activated STAT6 is increased and binds to consensus sites at the Jmjd3 promoter. Increased Jmjd3 contributes to the decrease of H3K27 dimethylation and trimethylation (H3K27me2/3) marks as well as the transcriptional activation of specific M2 marker genes. The decrease in H3K27me2/3 and increase in Jmjd3 recruitment were confirmed by in vivo studies using a Schistosoma mansoni egg-challenged mouse model, a wellstudied system known to support an M2 phenotype. Collectively, these data indicate that chromatin remodeling is mechanistically important in the acquisition of the M2-macrophage phenotype. (Blood. 2009;114:3244-3254)
Increased lung IL-4 expression in pulmonary fibrosis suggests a potential pathogenetic role for this cytokine. To dissect this role, bleomycin-induced pulmonary inflammation and fibrosis were analyzed and compared in wild type (IL-4+/+) vs IL-4-deficient (IL-4−/−) mice. Lethal pulmonary injury after bleomycin treatment was higher in IL-4−/− vs IL-4+/+ mice. By administration of anti-CD3 Abs, we demonstrated that this early response was linked to the marked T lymphocyte lung infiltration and to the overproduction of the proinflammatory mediators such as TNF-α, IFN-γ, and NO in IL-4−/− mice. In contrast to this early anti-inflammatory/immunosuppressive role, during later stages of fibrosis, IL-4 played a profibrotic role since IL-4−/− mice developed significantly less pulmonary fibrosis relative to IL-4+/+ mice. However, IL-4 failed to directly stimulate proliferation, α-smooth muscle actin, and type I collagen expression in lung fibroblasts isolated from the wild-type mice. Upon appropriate stimulation with other known fibrogenic cytokines, fibroblasts from IL-4−/− mice were relatively deficient in the studied parameters in comparison to fibroblasts isolated from IL-4+/+ mice. Taken together, these data suggest dual effects of IL-4 in this model of lung fibrosis: 1) limiting early recruitment of T lymphocytes, and 2) stimulation of fibrosis chronically.
Bleomycin-induced pulmonary fibrosis is characterized by inflammation, emergence of myofibroblasts, and deposition of extracellular matrix. In an attempt to identify genes that may be involved in fibrosis, we used a 10,000 element (10 K) rat cDNA microarray to analyze the lung gene expression profiles in this model in the rat. Cluster analysis showed 628 genes were more than or equal to twofold up- or down-regulated, many of which were known to be involved in fibrosis. However, the most dramatic increase was observed with FIZZ1 (found in inflammatory zone; also known as RELM-alpha or resistin-like molecule-alpha), which was induced 17-fold to approximately 25-fold at the peak of expression. In situ hybridization analysis revealed FIZZ1 expression to localize primarily to alveolar and airway epithelium, which was confirmed in vitro by analysis of isolated type II alveolar epithelial cells. However FIZZ1 expression was not detected in isolated lung fibroblasts. Co-culture of FIZZ1-expressing type II cells with fibroblasts stimulated alpha-smooth muscle actin and type I collagen expression independent of transforming growth factor-beta. Transfection of a FIZZ1-expressing plasmid into fibroblasts or treatment with glutathione S-transferase-FIZZ1 fusion protein stimulated alpha-smooth muscle actin and collagen I production. These results suggest a novel role for FIZZ1 in myofibroblast differentiation in pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.