Recent studies have shown that nicotinic acetylcholine receptor alpha7 subunit (nAChRα7) plays an important role in regulation of inflammation, angiogenesis and keratinocyte biology, but little is known about its expression after the skin is wounded. A preliminary study on time-dependent expression and distribution of nAChRα7 was performed by immunohistochemistry, Western blotting and RT-PCR during skin wound healing in mice. After a 1-cm-long incision was made in the skin of the central dorsum, mice were killed at intervals ranging from 6 h to 14 days post-injury. In uninjured skin controls, nAChRα7 positive staining was observed in epidermis, hair follicles, sebaceous glands, vessel endothelium and resident dermal fibroblastic cells. In wounded specimens, a small number of polymorphonuclear cells, a large number of mononuclear cells (MNCs) and fibroblastic cells (FBCs) showed positive reaction for nAChRα7 in the wound zones. Simultaneously, nAChRα7 immunoreactivity was evident in endothelial-like cells of regenerated vessels and neoepidermis. By morphometric analysis, an up-regulation of nAChRα7 expression was verified at the inflammatory phase after skin injury and reached a peak at the proliferative phase of wound healing. The expression tendency was further confirmed by Western blotting and RT-PCR assay. By immunofluorescent staining for co-localization, the nAChRα7-positive MNCs and FBCs in skin wounds were identified as macrophages, fibrocytes and myofibroblasts. A number of nAChRα7-positive myofibroblasts were also CD45 positive, indicating that they originated from differentiation of fibrocytes. The results demonstrate that nAChRα7 is time-dependently expressed in distinct cell types, which may be closely involved in inflammatory response and repair process during skin wound healing.