Non-invasive assessment of the risk of lymph node metastasis (LNM) in patients with papillary thyroid carcinoma (PTC) is of great value for the treatment option selection. The purpose of this paper is to develop a transfer learning radiomics (TLR) model for preoperative prediction of LNM in PTC patients in a multicenter, cross-machine, multi-operator scenario. Here we report the TLR model produces a stable LNM prediction. In the experiments of cross-validation and independent testing of the main cohort according to diagnostic time, machine, and operator, the TLR achieves an average area under the curve (AUC) of 0.90. In the other two independent cohorts, TLR also achieves 0.93 AUC, and this performance is statistically better than the other three methods according to Delong test. Decision curve analysis also proves that the TLR model brings more benefit to PTC patients than other methods.
Background
This study explored the feasibility of radiofrequency (RF)-based radiomics analysis techniques for the preoperative prediction of programmed cell death protein 1 (PD-1) in patients with hepatocellular carcinoma (HCC).
Methods
The RF-based radiomics analysis method used ultrasound multifeature maps calculated from the RF signals of HCC patients, including direct energy attenuation (DEA) feature map, skewness of spectrum difference (SSD) feature map, and noncentrality parameter S of the Rician distribution (NRD) feature map. From each of the above ultrasound maps, 345 high-throughput radiomics features were extracted. Then, the useful radiomics features were selected by the sparse representation method and input into support vector machine (SVM) classifier for PD-1 prediction.
Results and conclusion
Among all the RF-based prediction models and the ultrasound grayscale comparative model, the RF-based model using all of the three ultrasound feature maps had the highest prediction accuracy (ACC) and area under the curve (AUC), which were 92.5% and 94.23%, respectively. The method proposed in this paper is effective for the meaningful feature extraction of RF signals and can effectively predict PD-1 in patients with HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.