Non-invasive assessment of the risk of lymph node metastasis (LNM) in patients with papillary thyroid carcinoma (PTC) is of great value for the treatment option selection. The purpose of this paper is to develop a transfer learning radiomics (TLR) model for preoperative prediction of LNM in PTC patients in a multicenter, cross-machine, multi-operator scenario. Here we report the TLR model produces a stable LNM prediction. In the experiments of cross-validation and independent testing of the main cohort according to diagnostic time, machine, and operator, the TLR achieves an average area under the curve (AUC) of 0.90. In the other two independent cohorts, TLR also achieves 0.93 AUC, and this performance is statistically better than the other three methods according to Delong test. Decision curve analysis also proves that the TLR model brings more benefit to PTC patients than other methods.
Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.
Surgeons face challenges in intraoperatively defining margin of brain tumors due to its infiltrative nature. Extracellular acidosis caused by metabolic reprogramming of cancer cells is a reliable marker for tumor infiltrative regions. Although the acidic margin‐guided surgery shows promise in improving surgical prognosis, its clinical transition is delayed by having the exogenous probes approved by the drug supervision authority. Here, an intelligent surface‐enhanced Raman scattering (SERS) navigation system delineating glioma acidic margins without administration of exogenous probes is reported. With assistance of this system, the metabolites at the tumor cutting edges can be nondestructively transferred within a water droplet to a SERS chip with pH sensitivity. Homemade deep learning model automatically processes the Raman spectra collected from the SERS chip and delineates the pH map of tumor resection bed with increased speed. Acidity correlated cancer cell density and proliferation level are demonstrated in tumor cutting edges of animal models and excised tissues from glioma patients. The overall survival of animal models post the SERS system guided surgery is significantly increased in comparison to the conventional strategy used in clinical practice. This SERS system holds the promise in accelerating clinical transition of acidic margin‐guided surgery for solid tumors with infiltrative nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.