Despite its importance in macroscopic traffic flow modeling, comprehensive method for the calibration of fundamental diagram is very limited. Conventional empirical methods adopt a steady state analysis of the aggregate traffic data collected from measurement devices installed on a particular site without considering the traffic dynamics, which renders the simulation may not be adaptive to the variability of data. Nonetheless, determining the fundamental diagram for each detection site is often infeasible. To remedy these, this study presents an automatic calibration method to estimate the parameters of a fundamental diagram through a dynamic approach. Simulated flow from the cell transmission model is compared against the measured flow wherein an optimization merit is conducted to minimize the discrepancy between model-generated data and real data. The empirical results prove that the proposed automatic calibration algorithm can significantly improve the accuracy of traffic state estimation by adapting to the variability of traffic data when compared with several existing methods under both recurrent and abnormal traffic conditions. Results also highlight the robustness of the proposed algorithm. The automatic calibration algorithm provides a powerful tool for model calibration when freeways are equipped with sparse detectors, new traffic surveillance systems lack of comprehensive traffic data, or the case that lots of detectors lose their effectiveness for aging systems. Furthermore, the proposed method is useful for off-line model calibration under abnormal traffic conditions, for example, incident scenarios.The boundary conditions are not in the exact form as those in [10,23], but an equivalent formulation derived to convert the MCTM into a uniform characteristics of the sending and receiving functions as will be shown later. This formulation also makes the MCTM more suitable as a network loading model for the automatic calibration method.
AUTOMATIC CALIBRATION OF FUNDAMENTAL DIAGRAM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.