The Kirkendall effect has been recently used to produce hollow nanostructures by taking advantage of the different diffusion rates of species involved in the chemical transformations of nanoscale objects. Here we demonstrate a nanoscale Kirkendall cavitation process that can transform solid palladium nanocrystals into hollow palladium nanocrystals through insertion and extraction of phosphorus. The key to success in producing monometallic hollow nanocrystals is the effective extraction of phosphorus through an oxidation reaction, which promotes the outward diffusion of phosphorus from the compound nanocrystals of palladium phosphide and consequently the inward diffusion of vacancies and their coalescence into larger voids. We further demonstrate that this Kirkendall cavitation process can be repeated a number of times to gradually inflate the hollow metal nanocrystals, producing nanoshells of increased diameters and decreased thicknesses. The resulting thin palladium nanoshells exhibit enhanced catalytic activity and high durability toward formic acid oxidation.
Synthesis of metal nanoframes has been of great interest for their open structures and high fractions of active surface sites, which gives rise to outstanding performance in catalysis. In this work, Pd nanoframes with well-defined structures have been successfully prepared by directly excavating solid nanocrystals. The success of this synthesis mainly relies on the fine control over the oxidative etching and regrowth rates. Due to the different regrowth rates at three typical types of surface sites (e.g., corners, edges, and faces), the removal of Pd atoms can be controlled at a certain site by carefully tuning the rates of the oxidative etching and regrowth. Without the presence of the reducing agent, etching dominates the process, resulting in the shape transformation of nanocrystals with well-defined shapes (e.g., octahedra) to cuboctahedra. In contrast, when a certain amount of the reducing agent (e.g., HCHO) is added, the regrowth rate at the corner and edge sites can be controlled to be equivalent to the etching rate, while the regrowth rate at the face sites is still smaller than the etching rate. In this case, the etching can only take place at the faces; thus, Pd nanoframes could be obtained. On the basis of this approach, solid Pd nanocrystals with different shapes, including cubes, cuboctahedra, octahedra, and concave cubes, have been successfully excavated to the corresponding nanoframes. These nanoframes can unambiguously exhibit much enhanced catalytic activity and improved durability toward formic acid oxidation reaction due to their three-dimensional (3D) open frameworks compared with solid Pd octahedra catalysts.
As an excellent electrocatalyst, platinum (Pt) is often deposited as a thin layer on a nanoscale substrate to achieve high utilization efficiency. However, the practical application of the as-designed catalysts has been substantially restricted by the poor durability arising from the leaching of cores. Herein, by employing amorphous palladium phosphide (a-Pd-P) as substrates, we develop a class of leaching-free, ultrastable core–shell Pt catalysts with well-controlled shell thicknesses and surface structures for fuel cell electrocatalysis. When a submonolayer of Pt is deposited on the 6 nm nanocubes, the resulting Pd@a-Pd-P@PtSML core–shell catalyst can deliver a mass activity as high as 4.08 A/mgPt and 1.37 A/mgPd+Pt toward the oxygen reduction reaction at 0.9 V vs the reversible hydrogen electrode and undergoes 50 000 potential cycles with only ∼9% activity loss and negligible structural deformation. As elucidated by the DFT calculations, the superior durability of the catalysts originates from the high corrosion resistance of the disordered a-Pd-P substrates and the strong interfacial Pt–P interactions between the Pt shell and amorphous Pd–P layer.
Noble metal-based nanomaterials with amorphous structures are promising candidates for developing efficient electrocatalysts. However, their synthesis remains a significant challenge, especially under mild conditions. In this paper, we report a general strategy for preparing amorphous PdM nanowires (a-PdM NWs, M = Fe, Co, Ni, and Cu) at low temperatures by exploiting glassy non-noble metal (M) nuclei generated by special ligand adsorption as the amorphization dictator. When evaluated as electrocatalysts toward formic acid oxidation, a-PdCu NWs can deliver the mass and specific activities as high as 2.93 A/mg Pd and 5.33 mA/cm 2 , respectively; these are the highest values for PdCubased catalysts reported thus far, far surpassing the crystalline-dominant counterparts and commercial Pd/C. Theoretical calculations suggest that the outstanding catalytic performance of a-PdCu NWs arises from the amorphization-induced high surface reactivity, which can efficiently activate the chemically stable C−H bond and thereby significantly facilitate the dissociation of HCOOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.