The world still suffers from the COVID-19 pandemic, which was identified in late 2019. The number of COVID-19 confirmed cases are increasing every day, and many governments are taking various measures and policies, such as city lockdown. It seriously treats people’s lives and health conditions, and it is highly required to immediately take appropriate actions to minimise the virus spread and manage the COVID-19 outbreak. This paper aims to study the impact of the lockdown schedule on pandemic prevention and control in Ningbo, China. For this, machine learning techniques such as the K-nearest neighbours and Random Forest are used to predict the number of COVID-19 confirmed cases according to five scenarios, including no lockdown and 2 weeks, 1, 3, and 6 months postponed lockdown. According to the results, the random forest machine learning technique outperforms the K-nearest neighbours model in terms of mean squared error and R-square. The results support that taking an early lockdown measure minimises the number of COVID-19 confirmed cases in a city and addresses that late actions lead to a sharp COVID-19 outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.