Data-driven intelligent computational design (DICD) is a research hotspot that emerged under fast-developing artificial intelligence. It emphasizes utilizing deep learning algorithms to extract and represent the design features hidden in historical or fabricated design process data and then learn the combination and mapping patterns of these design features for design solution retrieval, generation, optimization, evaluation, etc. Due to its capability of automatically and efficiently generating design solutions and thus supporting human-in-the-loop intelligent and innovative design activities, DICD has drawn the attention of both academic and industrial fields. However, as an emerging research subject, many unexplored issues still limit the development and application of DICD, such as specific dataset building, engineering design-related feature engineering, systematic methods and techniques for DICD implementation in the entire product design process, etc. In this regard, a systematic and operable road map for DICD implementation from a full-process perspective is established, including a general workflow for DICD project planning, an overall framework for DICD project implementation, the common mechanisms and calculation principles during DICD, key enabling technologies for detailed DICD implementation, and three case scenarios of DICD application. The road map can help academic researchers to locate their specific research directions for the further development of DICD and provide operable guidance for the engineers in their specific DICD applications.
Retrieving the similar solutions from the historical case base for new design requirements is the first step in mechanical part redesign under the context of case-based reasoning. However, the manual retrieving method has the problem of low efficiency when the case base is large. Additionally, it is difficult for simple reasoning algorithms (e.g., rule-based reasoning, decision tree) to cover all the features in complicated design solutions. In this regard, a text2shape deep retrieval model is established in order to support text description-based mechanical part shapes retrieval, where the texts are for describing the structural features of the target mechanical parts. More specifically, feature engineering is applied to identify the key structural features of the target mechanical parts. Based on the identified key structural features, a training set of 1000 samples was constructed, where each sample consisted of a paragraph of text description of a group of structural features and the corresponding 3D shape of the structural features. RNN and 3D CNN algorithms were customized to build the text2shape deep retrieval model. Orthogonal experiments were used for modeling turning. Eventually, the highest accuracy of the model was 0.98; therefore, the model can be effective for retrieving initial cases for mechanical part redesign.
This product is a smart shoe cabinet, which is designed for domestic shoes storage and brings convenience for families to put shoes. Its mechanical structure mainly includes a drive module, a shoe rack module and a seat module. The electrical control part mainly includes 51 SCM, Raspberry Pi and various sensors. This shoe cabinet adopts a unitized module design. According to the demand of the residents for the shoe cabinet, this Smart Shoe Storage can be combined casually at the users’ will and unitized to make it suitable for various apartment types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.