Polymer nanodots (PNDs) from a hybrid carbon source (glucose and glycine) which exhibit a stronger fluorescence than the PNDs from a single source (glucose or glycine) are obtained by one-pot hydrothermal treatment. It is attractive that PNDs can be used as an effective fluorescent probe for the detection of iron ions with good selectivity and sensitivity in an aqueous solution.
This work reports a scalable synthesis of water-dispersible fluorescent carbon nanodots based on the simple hydrothermal method (180 °C for 6 h) of kitchen wastes (grape peel for example). We discuss the feasibility of synthesis from kitchen wastes both experimentally and theoretically, and the as-prepared nanodots have high selectivity for Fe(3+) ions based on fluorescence quenching which is due to the complexes between nanodots and metal ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.