Polymer nanodots (PNDs) from a hybrid carbon source (glucose and glycine) which exhibit a stronger fluorescence than the PNDs from a single source (glucose or glycine) are obtained by one-pot hydrothermal treatment. It is attractive that PNDs can be used as an effective fluorescent probe for the detection of iron ions with good selectivity and sensitivity in an aqueous solution.
A novel method of chiral separation based on protein-stationary phase immobilized in a poly(methyl methacrylate) microfluidic chip was developed. BSA conjugated with the shortened carboxylic single-walled carbon nanotubes (SWNTs) was employed as the chiral selector. Successful separation of tryptophan enantiomers was achieved in less than 70 s with a resolution factor of 1.35 utilizing a separation length of 32 mm. This is the first example of chiral separation based on SWNTs-BSA conjugates as stationary phase immobilized in microchip channel. The stability of the stationary phase in the channel was examined by microchip electrophoresis with laser-induced fluorescence detection. Factors that influenced the chiral separation resolution were examined. Under the optimized conditions, the proposed modified chip revealed adequate repeatability concerning run-to-run. These results show that the use of SWNTs-BSA conjugates within microfluidic channels hold great promise for a variety of analytical schemes.
The recombined ricin A chain protein (RTA) was transported into living cells by multiwalled carbon nanotubes (MWNTs) as a cellular carrier, as performed by natural ricin B chain protein (RTB). The conjugate of the toxin protein RTA and MWNT was found to translocate to the cytoplasm of various cell lines and performed biological functions, as evidenced by the induction of cell death. The delivery of RTA into the cells via nanotube carriers was directly visualized by transmission electron microscopy (TEM) and confocal microscopy. About three times higher cell death rates for L-929, HL7702, MCF-7, HeLa and COS-7 cells were demonstrated induced by MWNT-RTA conjugates, compared to those achieved by RTA alone. Especially for HeLa cells, the cell mortality reached approximately 75%. In addition, obvious selective destruction of cancer cells was achieved by coupling MWNTs-RTA-HER2, which selectively recognize the HER2/neu receptor on certain breast cancer cells. This is the first example of recombined protein toxin (RTA)-induced targeting destruction for tumor cells via carbon nanotube molecular transporters. The transporting capabilities of carbon nanotubes combined with functional proteins may open exciting new venues for drug delivery and cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.