Ischemia−reperfusion (I/R) injury leads to a low success rate of skin flap transplantation in reconstruction surgery, thus requiring development of new treatments. Necroptosis and apoptosis pathways, along with overexpression of reactive oxygen species and pro-inflammatory factors in skin flap transplantation, are deemed as potential therapeutic targets. This study provides a paradigm for nanozyme-mediated microenvironment maintenance to improve the survival rate of the transplanted skin flap. Prussian blue nanozyme (PBzyme) with multiple intrinsic biological activities was constructed and selected for this proof-of-concept study. The prepared PBzyme shows anti-inflammatory, antiapoptotic, antinecroptotic, and antioxidant activities in both in vitro and in vivo models of I/R injured skin flaps. The multiple inhibitory effects of PBzyme maintained a normal microenvironment and thus significantly promoted the survival rate of the I/R injured skin flap (from 37.21 ± 8.205% to 79.61 ± 7.5%). Of note, PBzyme regulated the expression of the characteristic signal molecules of necroptosis, including Rip 1, Rip 3, and pMLKL, indicating that PBzyme may be a therapeutic agent for necroptosis-related diseases. This study shows great prospects for clinical application of PBzyme in the treatment of skin flaps via local administration.
Sulforaphane (SFN) is considered an antioxidant agent, but the biological effects on hypoxia-treated osteoblasts remain unclear. Therefore, the aims of this study were to investigate the effects of SFN on the activity and mineralization of osteoblasts in hypoxia. Osteoblasts were treated with hypoxia with or without SFN, and apoptosis was assayed with caspase 3 Activity Assay Kit and flow cytometer. The levels of reactive oxygen species (ROS) were measured with DCFH-DA. The levels of glutathione (GSH) and glutathione disulphide were determined by the o-phthalaldehyde fluorimetric assay. Mineralization of Osteoblasts was detected by Alizarin red staining and alkaline phosphatase (ALP) staining, and the relative proteins levels were examined by Western blotting. Our results showed that SFN reduced the hypoxia-mediated apoptosis and ROS levels in osteoblasts. The utilization of SFN improved the inhibitory effect of osteoblast mineralization by hypoxia. Additionally, the effect of alleviating hypoxia by SFN will be an increase in osteoblast activity. These findings clarify the effects of SFN on hypoxia-treated osteogenesis and will help identify novel therapeutic strategies for the protection of skeletal health.
Bisphenol A (BPA), one of the main components of industrial products, is clinically associated with the increased male infertility rate. However, the underlying molecular mechanism of the BPA-resulted reproductive toxicity is not fully elucidated. Voltage-dependent anion channel 1 (VDAC1) is a pore protein and located at the outer mitochondrial membrane. As a mitochondrial gatekeeper, VDAC1 controls the release of reactive oxygen species (ROS) and the metabolic and energetic functions of mitochondria, and serves as a critical player in mitochondrial-mediated apoptosis. Herein, we explored the role of VDAC1 in BPA-induced apoptosis of spermatogonia. The results showed that BPA increased spermatogonia cell line GC-1 spg cell apoptosis and intracellular ROS level, and suppressed AMPK/mTOR signaling pathway at a dose of 80 μM for 48 hr. Lentivirus-mediated short hairpin RNA targeting VDAC1 (Lv-shVDAC1) silenced VDAC1 expression and enhanced BPA-restricted cell viability. Knockdown of VDAC1 inhibited the apoptosis of BPA-treated GC-1 spg cells determined by with changes of the expressions of pro-apoptotic and anti-apoptotic proteins. Knockdown of VDAC1 also alleviated the BPA-triggered intracellular ROS generation and oxidative stress. Moreover, silence of VDAC1 increased AMPKα1/2 phosphorylation and suppressed mTOR phosphorylation under BPA exposure. Dorsomorphin, an AMPK inhibitor, partially abolished the effects of VDAC1 gene silencing on BPA-stimulated GC-1 spg cells. In conclusion, inhibition of VDAC1 attenuated the BPA-induced oxidative stress and apoptosis and promoted the cell viability in spermatogonia through modulating AMPK/mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.