Background: Circular RNAs (circRNAs) belong to a new type of endogenous non-coding RNA and plays a key role in carcinogenesis. Circ-ZKSCAN1 (hsa_circ_0001727) has been proven to be a tumor-dependent circRNA. However, its role in non-small cell lung cancer (NSCLC) has been underreported.
Methods:The expression patterns of circ-ZKSCAN1 were determined using qRT-PCR in NSCLC samples and cell lines. Cell proliferation was examined utilizing the CCK-8 assay. Cell migration and invasion were evaluated using the Transwell assay. The combination of circ-ZKSCAN1 and miR-330-5p in NSCLC cells was analyzed by RNA pull-down and luciferase reporter assay. We used the bioinformatics software circbank, CircInteractome, TargetScan and Miranda to predict circRNA-miRNA and miRNA-mRNA interactions.Results: Our results showed that circ-ZKSCAN1 was significantly up-regulated in NSCLC, closely related to malignant characteristics and poor prognosis, and clinically related to tumor size and clinical stage.Subsequent experiments showed that circ-ZKSCAN1 could inhibit the growth of NSCLC cells in vitro and in vivo. Importantly, circ-ZKSCAN1 can act as a sponge of carcinogenic miR-330-5p to increase the expression of FAM83A, resulting in the inhibition of MAPK signal transduction pathway, thus promoting the progress of NSCLC. Interestingly, the increase in FAM83A expression caused by circ-ZKSCAN1 overexpression could in turn promote the expression of circ-ZKSCAN1.Conclusions: Circ-ZKSCAN1 is a key positive regulator of NSCLC, and clarifies the potential molecular mechanism of the new circ-ZKSCAN1/miR-330-5p/FAM83A feedback loop in promoting the progress of NSCLC.
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. However, the knowledge of the regulation of Osx expression is poor. MicroRNAs (miRNAs), a class of small non-coding RNAs, play critical roles in numerous biological processes, including the proliferation, differentiation, and survival of cells and organisms. Herein, we aimed to explore the effect of miR-143 on Osx expression and osteogenic differentiation. miR-143, which was suppressor of the osteogenic differentiation of MC3T3-E1 cells, had decreased levels of expression during osteogenic differentiation. Moreover, Osx was identified to be a direct target of miR-143. Inhibition of Osx performed similar effect with miR-143 on osteogenic differentiation, while overexpression of Osx could partially reverse the suppressive effect of miR-143. Collectively, these data indicate that miR-143 is a novel regulator of Osx, and it might play an essential role in the regulation of osteogenic differentiation.
MicroRNAs (miRNAs) contribute to the development and progression of various types of human cancers. The aim of this study was to study the role of miR-145 and to identify its functional target gene in osteosarcoma (OS) cells. We found that miR-145 was reduced in OS tissues and cell lines. Enforced expression of miR-145 inhibited cell proliferation, migration, and invasion abilities of MG-63 cells. Furthermore, we revealed that Rho-associated protein kinase 1 (ROCK1) was a target of miR-145 in OS. Finally, we found that silencing of ROCK1 performed similar effects with miR-145 in MG-63 cells, and ROCK1 was inversely correlated with miR-145 in OS tissues. Collectively, these data indicate that miR-145 may act as a tumor suppressor and contributes to the progression of OS through targeting ROCK1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.