Broadband near‐infrared phosphors are essential to realize nondestructive analysis in food industry and biomedical areas. Efficient long‐wavelength (>830 nm) phosphors are strongly desired for practical applications. Herein, we demonstrate an efficient broadband NIR phosphor LiInGe2O6:Cr3+, which exhibits a broad NIR emission peaking at ~880 nm with a full width at half maximum of 172 nm upon 460 nm excitation. The internal/external quantum efficiencies of LiInGe2O6:Cr3+ are measured to be 81.2% and 39.8%, respectively. The absorption of the phosphor matches well with commercial blue LEDs. Using the fabricated phosphor converted LED illuminating human palm, distribution of blood vessels can be clearly recognized under a NIR camera. These results indicate that LiInGe2O6:Cr3+ is a promising candidate to be used in future non‐destructive biological applications.
At the interface of van der Waals heterostructures, the crystal symmetry and the electronic structure can be reconstructed, giving rise to physical properties superior to or absent in parent materials. Here by studying a Bernal bilayer graphene moiré superlattice encapsulated by 30°-twisted boron nitride flakes, we report an unprecedented ferroelectric polarization with the areal charge density up to 1013 cm−2, which is far beyond the capacity of a moiré band. The translated polarization ~5 pC m−1 is among the highest interfacial ferroelectrics engineered by artificially stacking van der Waals crystals. The gate-specific ferroelectricity and co-occurring anomalous screening are further visualized via Landau levels, and remain robust for Fermi surfaces outside moiré bands, confirming their independence on correlated electrons. We also find that the gate-specific resistance hysteresis loops could be turned off by the other gate, providing an additional control knob. Furthermore, the ferroelectric switching can be applied to intrinsic properties such as topological valley current. Overall, the gate-specific ferroelectricity with strongly enhanced charge polarization may encourage more explorations to optimize and enrich this novel class of ferroelectricity, and promote device applications for ferroelectric switching of various quantum phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.