Malt is an important raw material in brewing beer. With the increasing development of craft beer, brewing malt has contributed diverse colours and abundant flavours to beer. While “malty” and “worty” were commonly used to describe the malt flavour of beer, they are still inadequate. This study focused on developing of a sensory lexicon and a sensory wheel for brewing malt. Here, a total of 22 samples were used for sensory evaluation. The panels identified 53 attributes to form the lexicon of brewing malt, including appearance, flavour, taste, and mouthfeel. After consulting with the experts from the brewing industry, 46 attributes were selected from the lexicon list to construct the sensory wheel. Based on the lexicon, rate-all-that-apply analysis was used to discriminate between six samples of different malt types. The principal component analysis results showed that malt types were significantly correlated with sensory features. To further understand the chemical origin of sensory attributes, partial least squares regression analysis was used to determine the association between the aroma compounds and sensory attributes. According to the colour range and malt types, 18 samples were used for sensory descriptive analysis and volatile compounds identification. Seven main flavours were selected from the brewing malt sensory wheel. 34 aroma compounds were identified by headspace solid phase microextraction gas chromatography-mass spectrometry-olfactometry. According to the partial least squares regression results, the aroma compounds were highly correlated with the sensory attributes of the brewing malt. This approach may have practical applications in the sensory studies of other products.
Quantum sensing exploits fundamental features of quantum mechanics and advanced quantum control to realise devices that combine high sensitivity with excellent spatial resolution. Such devices promise applications in a broad range of scientific fields from basic science and technology to biology and medicine. Here, we propose a new concept and design for all-electric nanoscale quantum sensing based on a carbon nanotube double quantum dot. Our theoretical analysis and numerical study demonstrate that this scheme can achieve sensitivities that allow for the implementation of single molecule magnetic resonance spectroscopy and therefore opens a new route towards nanoscale quantum sensing with applications in the detection and identification of single nanoparticles and molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.