Here we present a simple yet powerful approach for the imaging of nanostructures under an optical microscope with the help of vapor condensation on their surfaces. Supersaturated water vapor will first form a nanometer-sized water droplet on the condensation nuclei on the surface of nanostructures, and then the water droplet will grow bigger and scatter more light to make the outline of the nanostructure be visible under dark-field optical microscope. This vapor-condensation-assisted (VCA) optical microscopy is applicable to a variety of nanostructures from ultralong carbon nanotubes to functional groups, generating images with contrast coming from the difference in density of the condensation sites, and does not induce any impurities to the specimens. Moreover, this low-cost and efficient technique can be conveniently integrated with other facilities, such as Raman spectroscope and so forth, which will pave the way for widespread applications.
Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of the extremely low scattering intensity of SWCNTs and the strong substrate scattering. Here we show that Rayleigh scattering can be greatly enhanced by the interface dipole enhancement effect. Consequently colorful SWCNTs on substrates can be directly imaged under an optical microscope by wide field supercontinuum laser illumination, which facilitates high throughput chirality assignment of individual SWCNTs. This approach, termed "Rayleigh imaging microscopy", is not restricted to SWCNTs, but widely applicable to a variety of nanomaterials, which enables the colorful nanoworld to be explored under optical microscopes.
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.