Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity.
A high-dimensional quantum key distribution (QKD), which adopts degrees of freedom of the orbital angular momentum (OAM) states, is beneficial to realize secure and high-speed QKD. However, the helical phase of a vortex beam that carries OAM is sensitive to the atmospheric turbulence and easily distorted. In this paper, an adaptive compensation method using deep learning technology is developed to improve the performance of OAM-encoded QKD schemes. A convolutional neural network model is first trained to learn the mapping relationship of intensity profiles of inputs and the turbulent phase, and such mapping is used as feedback to control a spatial light modulator to generate a phase screen to correct the distorted vortex beam. Then an OAM-encoded QKD scheme with the capability of real-time phase correction is designed, in which the compensation module only needs to extract the intensity distributions of the Gaussian probe beam and thus ensures that the information encoded on OAM states would not be eavesdropped. The results show that our method can efficiently improve the mode purity of the encoded OAM states and extend the secure distance for the involved QKD protocols in the free-space channel, which is not limited to any specific QKD protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.