Research on RNA-associated interactions has exploded in recent years, and increasing numbers of studies are not limited to RNA–RNA and RNA–protein interactions but also include RNA–DNA/compound interactions. To facilitate the development of the interactome and promote understanding of the biological functions and molecular mechanisms of RNA, we updated RAID v2.0 to RNAInter (RNA Interactome Database), a repository for RNA-associated interactions that is freely accessible at http://www.rna-society.org/rnainter/ or http://www.rna-society.org/raid/. Compared to RAID v2.0, new features in RNAInter include (i) 8-fold more interaction data and 94 additional species; (ii) more definite annotations organized, including RNA editing/localization/modification/structure and homology interaction; (iii) advanced functions including fuzzy/batch search, interaction network and RNA dynamic expression and (iv) four embedded RNA interactome tools: RIscoper, IntaRNA, PRIdictor and DeepBind. Consequently, RNAInter contains >41 million RNA-associated interaction entries, involving more than 450 thousand unique molecules, including RNA, protein, DNA and compound. Overall, RNAInter provides a comprehensive RNA interactome resource for researchers and paves the way to investigate the regulatory landscape of cellular RNAs.
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA–RNA interactions and more than 1.2 million RNA–protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species.
With the dramatic development of single-cell RNA sequencing (scRNA-seq) technologies, the systematic decoding of cell-cell communication has received great research interest. To date, several in-silico methods have been developed, but most of them lack the ability to predict the communication pathways connecting the insides and outsides of cells. Here, we developed CellCall, a toolkit to infer inter- and intracellular communication pathways by integrating paired ligand-receptor and transcription factor (TF) activity. Moreover, CellCall uses an embedded pathway activity analysis method to identify the significantly activated pathways involved in intercellular crosstalk between certain cell types. Additionally, CellCall offers a rich suite of visualization options (Circos plot, Sankey plot, bubble plot, ridge plot, etc.) to present the analysis results. Case studies on scRNA-seq datasets of human testicular cells and the tumor immune microenvironment demonstrated the reliable and unique functionality of CellCall in intercellular communication analysis and internal TF activity exploration, which were further validated experimentally. Comparative analysis of CellCall and other tools indicated that CellCall was more accurate and offered more functions. In summary, CellCall provides a sophisticated and practical tool allowing researchers to decipher intercellular communication and related internal regulatory signals based on scRNA-seq data. CellCall is freely available at https://github.com/ShellyCoder/cellcall.
Accumulating evidence suggests that diverse non-coding RNAs (ncRNAs) are involved in the progression of a wide variety of diseases. In recent years, abundant ncRNA–disease associations have been found and predicted according to experiments and prediction algorithms. Diverse ncRNA–disease associations are scattered over many resources and mammals, whereas a global view of diverse ncRNA–disease associations is not available for any mammals. Hence, we have updated the MNDR v2.0 database (www.rna-society.org/mndr/) by integrating experimental and prediction associations from manual literature curation and other resources under one common framework. The new developments in MNDR v2.0 include (i) an over 220-fold increase in ncRNA–disease associations enhancement compared with the previous version (including lncRNA, miRNA, piRNA, snoRNA and more than 1400 diseases); (ii) integrating experimental and prediction evidence from 14 resources and prediction algorithms for each ncRNA–disease association; (iii) mapping disease names to the Disease Ontology and Medical Subject Headings (MeSH); (iv) providing a confidence score for each ncRNA–disease association and (v) an increase of species coverage to six mammals. Finally, MNDR v2.0 intends to provide the scientific community with a resource for efficient browsing and extraction of the associations between diverse ncRNAs and diseases, including >260 000 ncRNA–disease associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.