Research on RNA-associated interactions has exploded in recent years, and increasing numbers of studies are not limited to RNA–RNA and RNA–protein interactions but also include RNA–DNA/compound interactions. To facilitate the development of the interactome and promote understanding of the biological functions and molecular mechanisms of RNA, we updated RAID v2.0 to RNAInter (RNA Interactome Database), a repository for RNA-associated interactions that is freely accessible at http://www.rna-society.org/rnainter/ or http://www.rna-society.org/raid/. Compared to RAID v2.0, new features in RNAInter include (i) 8-fold more interaction data and 94 additional species; (ii) more definite annotations organized, including RNA editing/localization/modification/structure and homology interaction; (iii) advanced functions including fuzzy/batch search, interaction network and RNA dynamic expression and (iv) four embedded RNA interactome tools: RIscoper, IntaRNA, PRIdictor and DeepBind. Consequently, RNAInter contains >41 million RNA-associated interaction entries, involving more than 450 thousand unique molecules, including RNA, protein, DNA and compound. Overall, RNAInter provides a comprehensive RNA interactome resource for researchers and paves the way to investigate the regulatory landscape of cellular RNAs.
Although biomimetic approaches have proven capable of converting resveratrol (1) concurrently into many of the more complex oligomers produced by plants throughout the world (such as 2-10), methods to access single members of the family have proven far more difficult to identify. Herein is described a strategy-level solution based on the use of a common building block, one distinct from Nature's starting material, that can participate in a variety of highly selective, reagent-controlled reaction cascades. These endeavors have led to the controlled synthesis of 25 natural products and analogues, molecules whose architectures encompass nearly all the carbogenic diversity of the resveratrol family.
Despite the attention paid to resveratrol (1) owing to its potent biological activity, little effort has been devoted to studying resveratrol‐based oligomers (such as 2–4). The first general synthetic approach is outlined for accessing the carbogenic diversity possessed by this family of compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.